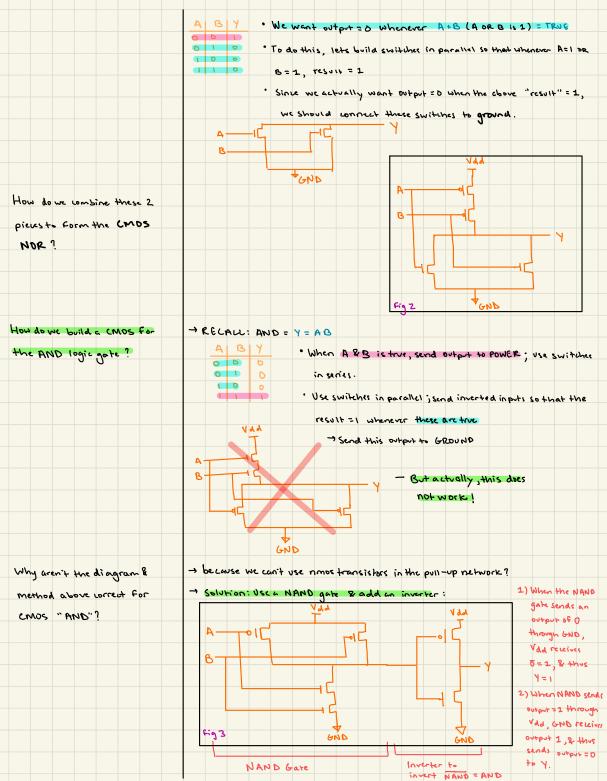

211 Review : Storing D	ata in Memory	
How much data can be stored in I	→ 1 byte ; aka 8 bits	Byte Address Valve
mum. address?	-> The top row is "byte address O"	D DPDDDD01D1(2)
What if you want to store an	+ An int is size = 4 bytes, so it will span	1 060000100 (4)
integer?	multiple addresses in memory !	2 0611111110 (-2)
	- 4 bytes - 4 addresses in memory.	
	→ Ex: 329, 421 = 0.0000 0000 0000 010	1011 6011 0110 0060 10
What is the Most Significant	> The leftmost byte of a number , e.g. 000000	()
Byte (MSB)?		Byte Value
What is the Least significant Byte?	-> The rightmost byte, e.g. 1100 1101	
(LSB)		
What is Little Endian Ordering?	-> Where the USB of an int goes in the	
J	first byte address	2 0000 0101
	- AKA, Fill the table from "right to left";	3 0000 0000
	• the last 2 nibbles of num -> 1st address	Big Endian
		Byte Address Valve
	• nibbles 5 & 6 \rightarrow 2nd address • nibbles 2 & 2 \rightarrow 4 th address	0 0000 0000
What is Big Endian Ordening?	-> Where the LSB of an int goes in the	1 0000 0101
J J	largest byte address	2 0000 0110
Which do we use in this class?	-> Little Endian	3 1100 1101
	-> (Index [element] x size of (element +ype)) + have address
How do you compute the	-> Ex: An int array with 10 elements	
address of an element in an	· Earnerement requires 4 bytes laddr	د (يد ر
array !	· element O → address O×4 = add	
	· element 8 → address 8×4 = add	
Diagrams to visualize	$\Rightarrow [x: arc = [5,90,100,40]$	L now = 4 by tes
arrays?	Addr. Data Addr.	Data
		10 10 4000 4640 6640 6860 6866 6660 4000 400
	2 2 0000 00000 0x00000000000000000000000000000000000	0010 01)0 0000 0000 0000 0000 0000 0000
	4 0101 1010 0r 0000010 5 90 0000 0000 0 00 0000 14	
	β 10 0000 0000 0x 00000018 γ 00000 0x 0000001 C 0x 0000001 C	
	8 010 0400 000 0000 0000 0000 0000 0000	
	10 0000 D000	
	12 0010 1000 13 UD 0000 0000	
	14 40 0000 D000 15 0000 0000	

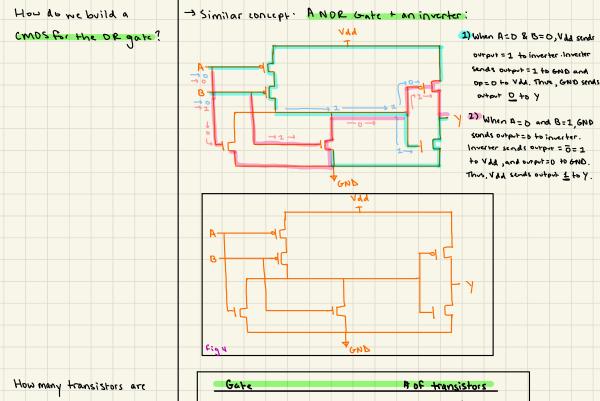
How do we know how many	> It depends on the size of our total memory!
bits are needed to	→ bits_per_addr = log (size of memory in bytes)
address our memory?	→ Ex:
	• Memory = 16 bytes each address is log (16) = 4 bits (eg, edder 1=0010)
	• Memoy = 4 GB
	•168 = 2 ³⁰ bytes
	$e_{\alpha in} address is \log_2(4 \cdot Z^{3^\circ}) = \frac{32}{32} bits$
	• eg, adde 1 is 0000 0000 0000 0000 0000 0000 0000

Digital Logic			
What is a logic gate?	→ A device that perfo	orms a boolean funct	ion to produce a single binary
	out fut.		
	+ Acts as a building	work for disital wa	
	7 Acts as a building	,	
	-> Several types of 10;	gic gates, each of wh	ich represent a single logical
	operator.		
What is an "Inverter" or Not	-> Represents NOT 10	aical precation	
Gate ?	→ Can be represented	by a symbol, truth	table, or equation :
	Symbol	Equation	Truth Table A Y
	A-00-Y	$\overline{A} = Y$	
			10
Gate	Symbol	Equation	Truth Tuble
What is an AND Gate ?	A-I-A	A = K	ABY
)=A×B	
		Y=A * B	
			1 1 N N
What is an OR Gate?	A Y	Y = A + B	ABY
	6		
			1 0 1
			1 1 1
What is an XDR Gate?	Y - Co	Y=A ⊕ B	ABY
			1 J D
	> Y is true when eith	her A OR B is true, but	not both. "XOR" = exclusive OR
What is a NAND Gate?			AIBIY
What is a White Gate .		Y=A×B	
	the circl indicates negation		
	negation		1 1 0
	-> V :		
	→ Y is the when (A a	and DJ is raise just he	
What is a NDR Gate?	r-of	Y= A+B	
	5-2-		0 1 0
	-> Neach the second		
	- Negate the result of		ABY
What is a XNOR bate?	Y-OCEA	Y= AOB	001
	872		
			1 1 1
	-> Negate the result of	(A XOR B)	

Transistors	
	Circuits -
What is voltage?	→ The force that makes currents flow !
	→ Measured in Volts (V)
what is current?	→ The rate of flow of electrons.
	→ Measured in <u>Amperes</u> (A)
Analogy to understand	→ A Dam with water & the top and a reservoir at the bottom.
voltage & current?	→ Noltage ≈ The desire of the water to flow downhill.
	· NOT the actual movement of the Water. Voltage itself is static.
	→ Current 2 The actual Flow of the water downstream.
	. The size of the opening affects the amount of water (current) that can flow.
Mark :	The wider the "opening", the higher the writent
What is a closed circuit?	→ A circuit that is fully connected & allows electricity to flow uninterrupted.
	→ When a switch (and circvit) is closed, we know the voltage on both ends of the circuit.
	5/
What is a 2	
What is an open circuit?	→ A circuit that contains a broken connection.
	→ Electricity stops Flowing @ point where connection was lost.
	-> When a switch is open, we don't necessarily know the voltage at the end of the
	circuit - We'd need to see the full circuit.
	51 0- 111 "open" = OF F
What are switches?	-> contalled by physical contact. STMBDL:
What is the symbol ?	
-Tra	nsistors -
What are transistors?	-> Like switches, but controlled by a voltage, rether than physical contact.
What "states" do transistors	→ Just 2 states - ON or OFF its binary.
operate in?	-> This is why all machines communicate in binary (1s and 0s)!
Wait I thought you said transistors	-> They are, but we can use binary terms rather than exact voltage levels for discussing
are controlled by voltage?	them.
	→ high voltage = "logic high" = logic 1 = I
	→ low voltage = "logic low" = logic D = D

What is the symbol for	-> The terminal labeled with the blue dot determines
transistors?	whether wrrent can flow between the terminals labeled
	with the red dot
What are the terminals	2. Gate : controls whether transistor is on or off
in an NMOS	2. Source : endpoint Vo (drain voltage)
transistor?	3. Drain : endpoint V6
	(gate
	voltage)
	Vs (source voltage)
What does it mean if the	-> a.K.a. "logic 1"
What does it mean if the	
gate voltage is high?	→ Current can flow between the source and the drain they will be
	connected & will have the same voltage.
Example?	→ e.g., if Vs=logic D, Vo also = logic D. And vice versa.
	v _b (2) v _b (0)
	(1) (1) (1)
	$\begin{array}{c c} V_{b} \\ (1) \\ V_{c}(1) \\ V_{c}(1) \\ \end{array}$
What does it mean if the	→ aka "Ibgic D"
	→ Source & drain are not connected jurrent cannot flow.
gate voltage is low?	
	→ The voltage of the drain will be vak nown.
	V V V V V V V V V V V V V V V V V V V
	Vod DR Vod
	$ \begin{array}{c} V_{6} \\ (0) \\ V_{5} \\ (1) \\ V_{5} \\ (1) \\ V_{5} \\ (0) \\ (0) \\ V_{5} \\ (0) \\ V_{5} \\ (0) \\ $
	$ \begin{array}{c} V_{6} \\ (0) \\ V_{5} \\ (1) \\ V_{5} \\ (1) \\ V_{5} \\ (1) \\ V_{5} \\ (0) \\ (0) \\ V_{5} \\ (0) \\ V_{5} \\ (0) \\ $
What is a PMOS	-> Same 3 terminals as with NMOStransistor,
Transistor ?	-> The gate voltages are reversed :
	· Gate voltage LOW (logic=0) = wrrent can flow
	· Gate voltage HIGH (10gic=1) = current cannot flow
How do we define the	nmos pmos
behavior of a transistor?	· behaves as an open switch · behaves as an open switch
	when VG is low. When VG is high.
	· behaves as a closed switch · behaves as a closed switch
	when V is high. When V is low.

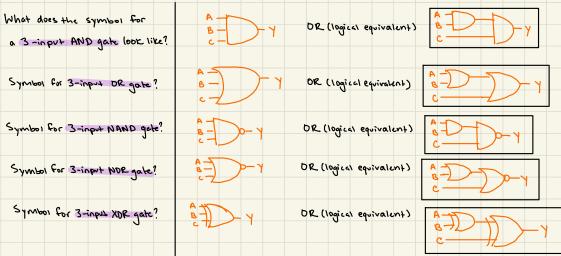

What is Moore's Law?	-> Atrend describing the reduction in transistor size in machines/computers
	-> Moore's Law: The # offransistors in a given area on a chip doubles every 2
	years
	• ~ 2,000 transistors in 1970 -> > 10 billion today!
	→ The trend is coming to an end now, as the industry develops alternative technologies to
	ntinue improving chip performance.
	, , , , , , , , , , , , , , , , , , , ,


Building Logic Gates	with Transistors & CMOS
RELALL: EX of a logic gate ?	→ Inverter gate: A -bo-y (Y=A)
3.5	→ Ste pg 3 of notes.
What is power ?	→ A component (of a circuit ?) that produces a logic high (1) value
	→ Symbol: T
	→ Always connected to adput via a prostransistor.
	· RELALL: pross transistor is closed for when input = D
What is ground?	- A component that produces a logic low (0) value.
	-> Symbol: 4
	- Always connected to output via an amos transistor.
	· RECALL: Most transistor is closed (01) when input = 1
Visual example of an Inverter	-> RECALL: Switches are a way to physically control the opening & closing
with switches?	of circuits, while transistors operate on logic values.
	Power
	A V DUT put A Switch" connecting ground to potput
	a "switch" concerting growing to bot put
	Ground
How does this inverter work when	- When input = D, we manually close the top power switch .
input = D?	- When input = 1, we manually close the bottom/ ground switch.
	T Since power produces logic = 1 & power is
	A = O
How does it work when input = 1 ?	Power=1 - Since ground produces logic=D &
	A = 1 Y = 0 ground is connected to output,
	Gnd = D Power = 1 T Since ground produces logic = D & A = 1 V = D ground is connected to output, output = D.
How would we build this	-> Replace the power switch with a prostransistor. Replace ground switch w) an amos
inverter with transistors?	transistor.
	→ Then, invert the output of the power transistor (with the o symbol)
	Power

-ol - Ylov+3-A (In)

How does this inverter	-> IF input = 1, prostr. is OPEN , so power is not connected to output.
work when input = 1?	- IF input = 1, mos +c. is CLOSED, so goind is connected to output.
	Power
	$A(in) = 1 - \frac{1}{100} + \frac{1}{1000} + \frac{1}{$
How does this inverter	→ If input = D, prostr. is CLOSED, so power is connected to output.
work when input = 0 ?	→ IF input = 0, nones +r. is DPEN, so ground is not connected to output.
	A (IN)=0 - Vlov+)= 2 CMos Inverter
	Gind = p
What is a CMDS?	- CMDS = "Lomplementary MDS" the pMDS & MMDS transistors complement each
	other to form the logic gate. Power
N.N. N. K	The inverter described above is a CMDE Inverter.
What is the pull-up network?	> What "drives" the support whenever the support is 1.
	- ALWAYS associated with PMOS translator Inputs Output
What is the pull-down network?	→ What "drives" the output whenever output is D.
	ALWAYS associated with nMOS transistor.
	→ Only one network will be on at a time.
What are "Switches in	-> Think of them as an AND function. When 2 switches A Grid
series"?	and B are connected in series , current will only flow if A MOD B are
	on i closed
	-> Writing AND switch B
How do they look?	
What are switches in parallel?	→ Think of them as an OR function. Current will flow if A DR B is cloced.
	→ current = switch B DR switch B
	In anomaly in the second secon
	B

How do we build a CMDS	-> RECALL: NAND Y = A × B / Y = AB A B Y
For the NAND logic gate?	-> When AB is true, we want output = D, s. (0 1 1)
5.0	we can build "switches in series" (aka
	A AND B) and connect them to GROUND, since GROUND always sends
	BUTENT OF D: Y
	• This part of the (MOS will result in something
	GND (namely, logic = D) being sent to Y whenever (AB)
	is + rve. A=1, B=1 => Ground=1=> Y=0
What dowe build for when	- When A=D OR B=D , we want output=1. So we can build "switches
A and B archit both logic=1?	in parallel " Laka A OR B), but invert the values being sent to the A & B
	transistors.
	if A = D and B = D, send 1 and 1 to the 2 switches . Since at least one
	is 1, output of 1 is received by power. A=0,B=D => Power=1 =>>=1
	if A=D and B=1, send 2 and D to the 2 switches. Since at least one
	is 1, output of 1 is received by power. A=0, B=1 => forwar=1 => y=1
	<u>v</u> ^λ ^λ
	B
	<u> </u>
How do we combine these 2	
pieces + form the CMOS	
	B Y
NAND?	
How do we build a CMDS	- RECALL: NOR Y= A.B Figz GND
For the NDR logic gate?	A B Y . Lets build "switches in series" & invert the inputs so that
	0 1 result = 1 if and only if A=D and B=D
	1 0 0 Since we actually want the output to be I (output = result) when
	A=D and B=D, we should connect these switches to power.
	Vad
	B


required to build each type of	NOT	2 (-1>0	-)
gate?	ana	6 (fig.	3)
0	OR	6 (fig.1	4)
	NAND	۲ (۴۰:۹۰	1)
	NOR	۲ (۴۰۹	.2)
	XOR	12	
	XNOR	12	

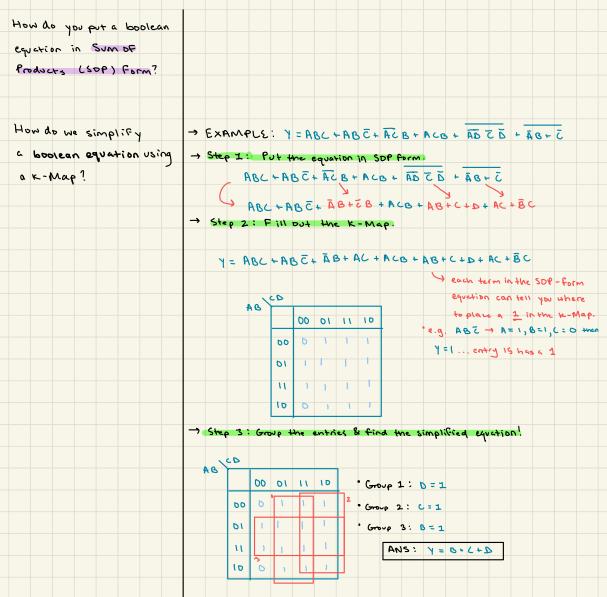
Why do AND and DR require > Note that AND and DR gates require

6 transistors? 4 (NAND/NOR gate) + 2 (Inverter) = 6 transistors!

Digital Logic Pt. 2	
Why do we want to minimize	-> Smaller amt. of transistors Reduces:
transistor count when building	· Delay from input to output
logic gates?	· The area of the circuit taken up ; this is good ble we can
	pack more logic (i.e. transistors) in a given space.
	· Power consumption
	· The lost of the circuit
What is a logically equivalent	-> The "bubble" on an AND or DR symbol :
circuit to an inverter ?	A B G (OR) + 2 (NOT) = 8 transistors
	B OR NOT
	is equivalent to
	B DO-Y 4 (NOR) transistors
	NOR.
	But aboviously, one uses much loss transistors than the other!
What is a logically equivalent	A D Y is equivalent to B D Y Conventional way to draw
circuit for NAND?	
Whatabout NOR?	A o This is the better,
	B -) is equivalent to B -) - Y -> Conventional way to draw NOR
	NOR
How do we minimize transistor	2. Replace AND and DR gates with NAND gates, or NDR gates.
count on logic gate diagrams?	2. Add bubbles to make the circuit logically equivalent.
	3. Cancel out the free bubbles
	4. Draw the NAND and NDR gates in their conventional form.
Example?	
	2) 3) three 2 cancel out
	Råded inverter bubbles to These 2 cancel but make the circuit equivalent
	after replacing the RND and OR with NANDS
	CO-Replace Dwith Do

- Gates with more than 2 inputs -

The Laws of Boolean Algebra -> To create logically equivalent circuits that use fewer transistors (What do we use boolean (MOTIVATION : Rezell notes on Digital Logic pt. 2) algebra for? What are boolean algebra -> Laws about booleon statements where •"+" = OR lows ? · Letters (A, B, C, etc.) represent literals • "." (alca multiplication) = AND - Every Boolean alg law comes in a pair of etatements : the AND version and the OR version . What is the Identity Law? -> A+D=A (Any literal A or'd with O will always output A). → A · 1 = A (Any literal A and'd with 1 will always output A). What is the NUIL Law ? (A OR 1 always = 1) A+1=1 $\mathbf{O} = \mathbf{O} \cdot \mathbf{A}$ (A AND O always = O) -> A+A=A (A DR A = A) What is the Idempotent Law? -> $A = A \cdot A$ (A = A 0MA A) $A + \bar{A} = 1$ (A OR NOTA = 1) What is the complement Law? → A·Ā=O (A AND NOT A = O) What is an example of -> The equation Y= AA+BC produces this circuit: optimizing a lircuit? B O c O * it has b+ b+ b = 18 transistors -> Using the idempotent law AR = A , we can reave the equation to Y = A+BC , producing the circuit A 🖸 – **6 7** · it has 6+6=12 transistors → By converting the gates into NAND gates (RECALL: Digitar Logic 2), we can further reduce the circuit to 10 transistors : A De What is the Commutative Law? → A+B = B+A + A.B = B.A \rightarrow (A+B) + C = A+(B+C) What is the Associative Law? $(A \cdot B) \cdot L = A \cdot (B \cdot C)$ $A \cdot (B + L) = (A \cdot B) + (A \cdot L)$ What is the Distributive Law? (A AND (B OR L) = ((A AND B) OR (A AND C)) $\rightarrow A + (B \cdot c) = (A + B) \cdot (A + c)$


(A OR (BANDC)) = ((A OR B) AND (A OR C))

Proof for the distributive	- Lets use the other laws to prove the truth of A + (B.C) = (A+B). (A+
law LOR version)7	
TAN LUE VERSION J.	1. Distribute out the terms: A + (BL) = AA + AC + AB + BC
	= A + AC + AB + BC
	= A(1+c+B)+Bc
	= A (1) + BC
hat is De Morgan's Theorem?	-> Used to simplify large NOT bars (e.g. A+B)
	$\rightarrow \overline{A + B} = \overline{A} \cdot \overline{B} (\text{NOT } (A \text{ OR } B) = \text{NOT } (A) \text{ AND } \text{NOT } (B))$
	-> AB = A + B (NOT (A AND B) = NOT (A) DR NOT (B))
	-> This theorem is actually how we created the "conventional" NANO gate :
	B-D-Y is equivalent to B-D-Y
	$Y = \overline{A} + \overline{B}$ $Y = \overline{A}\overline{B}$
	→ DeMorgan's : Flipping the inputs (AB → AB), operations (AB → A+B),
	and the outputs (A+B - A+B) Thus AB - A+B
Then would we need to use	- When converting a truth table into a boolean equation!
hese laws for simplification?	2. (reate an equation in "sum of products" form (RECALL)
	Create and Education in State Provers Faith (EDERCE)
	2. Use the laws to simplify!

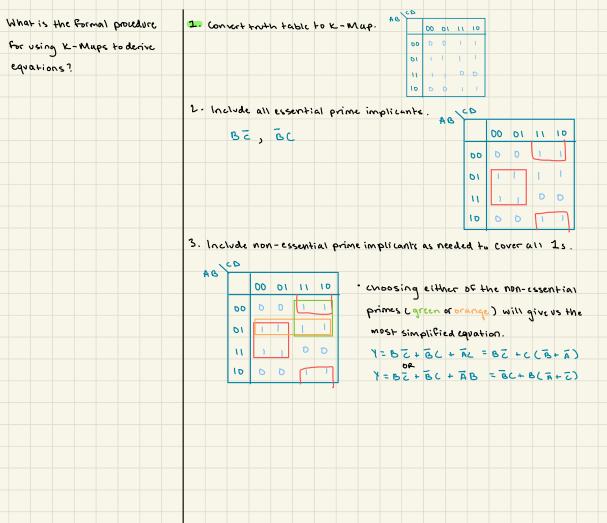
Karnavgh Maps	(K Maps)	
What are K Maps?	-> A tool used to simplify b	oolenn expressions
	· An alternate tool to using	boolean algebra laws.
		method to find simplified boolean expressions.
		aps always derive the most simplified equation!
How do K Mups work?		ou aren't always 100% sure if you've maximized simplifie
	→ A diagram grid that makes i	
e		esponde to a single row lentry in the truth tabl
Example of a K Map for	$\rightarrow Given A B C Y$	ABC
a 3-Input Function?		00 01 11 10 Because in Row 2 R R R R R A=0, B=1, C=0
	truth table: 0 1 0 0 0 1 1 1 3	0 0 1 3 2
		1 ^R ^R ^R ^R ^R ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻
	1 1 0 0 · · · · ·	he "O" & "I" on y-axis indicate values of A
		ne "00", "01", "11", "10" are values of B&C, respectivel B=D B=D B=1 B=1 C=D C=1 C=1 C=0
		N no.
How do we fill in the K-Map?	→ With the Y (out put) of ear	
		00 01 11 10
		0 0 1 1 0
		10000
what is gray code?	-> The ordering that we us	sed for the B and E values in the exabove.
3 1 2 2 2		
		res differ by only 1 bit - unlike binary : Bioacci Dia provide 1
	Gray Code: 00,01,11,10	Binary: 00, 01, 10, 11
	10	eg L, R, above, or below
Nhy is gray code uschul	-> Each square in the K-Map	differs from its adjalent squares by one
For K-Maps?	liter al :	1
1 m is ir iaps ,	ABC	
	00 01 1	
	0 6 1 1	and only differ by the value of C literal
	1 0 0 0	Entries 1 & 3 both differ only in their 0
	<u> </u>	7 6 literan

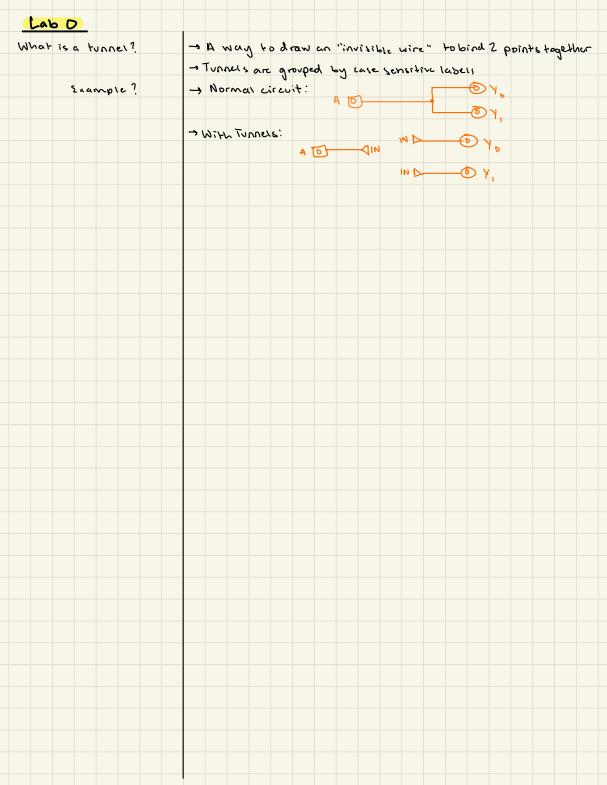
So how do you use a K-Map	2. Make the K-Map "table", & fill in all squares (according to truth table)
to find simplified Boolean	ABC
equations ?	00 01 11 10
Example of using a K-Mup?	
	2. Group the terms together all terms where the entry is I must get grouped.
	· We'll learn later about how to create the groups.
	BC "Grouping" Entries 1 & 3
	00 01 11 10
	3. Find the literals that each group has in common , and "OR" then in the final eq.
	- Entry 1: ABC - Entry 3: ABC
	· Both entries share ā and C! ANS: Y= ā C
How do	→ Ex: A BC
How do you read a	00 01 11 10
grouped K-Map?	$ \rightarrow Ex: A = \begin{bmatrix} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$
	2. For each group, analyze each entry in the group. Extract the terms that all
	entries have in common (there should be 2?). AND these terms together
	$\begin{array}{c} \bullet LeFt \ grovp : A = I \ B = O \longrightarrow A B \end{array}$
	· Right group: A=1, c=1 → Ac
	<u>DR</u> the terms from step 1 together to create the final equation.
	$Y = A \bar{B} + A c$
What are the Grouping	All squares in each groop must contain only 1s, and every cell containing
Rules For K-Maps?	a 1 must be in at least one group.
F3	
	"Groups may be horizontal prvertical, but NOT diagonal.
	3. Groups must contain 2° cells , where n=0, 1,2, etc. aka, must be a power
	bF 2. e.g. 2,2,4,8, ceris.
	A 8C A 8C

	4.	F-										.,							
		La	BC	9105	p m	USF	6e 0	as la	irge	as	boz.	510	ع.						
		A		00 0	1 11	10			٩		00	07 1	1 10	٦					
			0	00 0 1 1						0				-					
			1	0 0			×			1	0		1	X					
			-								~	<u> </u>							
	5.	Gnu	P5 1				mund	the '	tahi										
		-	BC	, ,		~ ~	1001.0			~.		_							
				00	01 11	10	.н	ere, t	the e	Jroup	is	A i	δē,	ΑĒ	Č,Ŧ	1 BZ	,and	ABZ	-
			D	١				(1:											
			1	L.		ι N													
	۶. v	Nher	m	الازما	le q		, eve	ry gr	ουρ	shoul	. 2 .	onta	in a	.+ \e	ast	one	vnig	re 1	
		1.00			1	. '		1									~~~~	~ _	
				nique	entr	J, ·				BC				>	, the	bot	tom	quore	
		A		00 01	11 1	0			A `		0 00	1 11	10	1	15	redu	ndan	1+	
			p				/				1 1			x					
			1	D D						-	0 0								
			-			<u> </u>		_				-							
How do we create a K-Map	-> 1	LC1H	n te	rohe	:	R	\$ wo	A	в	с	D	Y							
							ь	0	0	0	0	0							
From a truth table with 4							1	0		6	1	0							
variables ?							2	0	0	1	0 1	- i							
							4	0		D	0	1							
							5	0		6	י ס	0							
							6		- i -	- i -	ĭ	0							
							8		D D	D	D	0							
							9	+	b	1	D	1							
							14		٥	1	1	0							
							12			0	0	1							
							14		1	1	0	D							
							15		1	1	1	0							
	-> 1	- •	۸	(00-				1.						、 .					
			tap			- 111100-1		di c u t e				-							
	A	0)	CD				1) usin	g Gra	ay coo	de or	der	50 4	nat	ndja	cent c	ells d	.: ther	6.9
				00	01	TT.		001	1 1	litera	A.								
			00	0	1	3	2		ا الم			10	43.0	en Ex-	. 11		-	L 0.	
			01	4	s	7	6	<u></u> >	TVIIS	cett i	5 01		. The	1 - 401	< 14 (onds	ra K-bu	\$ 6.
			ц																
				12	13	15	14												
			10	8	٩	w	10												
Furner Creation																			
Example of reading a	AG	CD																	
4-variable K-Mup?			00	51 11															
		00	1	0	D														
		01	1	1 1	0														
		П	- U	V V	N														
		10	N	00	0														

Quiz	O Review			
Logic Gate	s			
Name	Equation	Symbol	Transistor Lou	nt
AND	0 A = Y	AD-Y		
OR	7-A-B	BD-7	6	
NUT	7= A	A -Do-Y	2	
NAND	$\gamma = \overline{AB}$	A Dor OR B Dor OR	. <u>ч</u>	
HOR	Y= A+B	B Day or A-0 B-0	→ γ 4	
xor	8⊛A = Y	A-D-Y		
XNOR	¥= A⊕Β	A-Do-Y	12	
211 Review	J			
Unit	bits	example		
byte	Q.	000001101		
nibble	ч	וסוו		
word	16 or 32	?		
→ With r	bits,			
	n represent 2° a	listinct values.	· LAR GEST NUM: 2° -	
	omplement most		· 2's comprement me	
nega	tive num : - (2)	positive num: (2"	-')-1
→LSB = R	164-TMUST 8 bit	s. Stored in the 1 st mem a	ddress (little Endian)	
- MSB = (-EF-TMUST 8 bi	rs. Stored in the last mem	address Address	Value
42,185	- 060000 0000	1010 0101 0000 0600	0 1001001	1100 1001
	MSB		LSB 1	1010 0100
-> Bits needs	ed to address mem	on = log (size in bytes of)	total memory) 2	0000 0000
			3	0000 0000

	Qu	12	0	Re	,vie	ω.																			
21	1 Rei	vien)				-																		
\rightarrow	Decin	n 61	D		۱		2		3		ч		S		6		٦		8		4	10		11	
	Bina	~	000	σ	000	١	001	D	100	١	٥١٥	00	010	• •	0110	5	011	١.	1000	、	1001	1010	,	100	
	Hex		010		0⊀	1	× 0	2	٥ĸ	3	Ю×	ч	<u>×</u> 0	5	D. (0	0×1	٦	٥×٩	ୡ	٩×٩	1 ×0	ς	D× B	
•																									
	Decin	n 61	12			13			14			15			۱۵			١٦			18		19		
	Bina	2	110	D		110	ι.		١١١e	,		nu			100	00		100	DI		(0010		100	.1	
	Hex		0 x 0	5		0x1	D		o× E			0x F	<u>-</u>		0x 1	a.		0×1	L1		0x12		٥×	3	
->	Lonv	en;	ng d	ecia	Mal	٢٥	hex																		
	1. F								4092		 -		-	. V	sher			dan	x (0	n h	ight a	; max	val	r 5h	
			aka						1014			w	-	٠,			7.							U	
	Ε×					0	З	2	be	دمر	۶c	3	(15) L :	2(1	.) =	٥٥								
																		Size	ิญเ	elu	ment	type))+	oase ad	dr
	E×		0									~											1		
			10																						
													مور:	ine	\ ve	ai	00.0	£ 16	cet.	Ce.\e	van	+ digi	+	n	
			base								-												-	0	
								12																	
									57	,															
	З.	(.	-0.4								5	2		١٥	(3)) + (11	u ک	,) () × 3	ц			
			hd r																						
			ĺ												0 -				. 03	• • • •	, .				
											+				ь										
															5 3			_	U						
	Tr	<u>60</u>	sis	201	~												1								
_ ,	nN					1.	2101	-	D	Ne -	`						nM	201	\rightarrow	"	Dem	<u>م</u> "۱	A A C	_	
	1,10				<u> </u>							_	D	1											at a
_	. 14	A TO											0 5	10								<u> </u>		be th	
,	PW	0									•	Or	•											lowing	
					, J	~~ ,	Jr	-	ъρ	241														105,	
																			'gr	-) (-1520	(+ L10	sca	=> power	
																	0	<u>n.</u>							


Multiplexers		
What is a 2:1 multiplexer?	- A circuit that chooses an output from among 2 input	s, based on the value
(2:1 mvx)	of a select signal.	,
	-> Multiplecers are useful fur implementing if-statements.	
What is the 1:1 mus support	These labels tell vs ho	w the mux chooses the
What is the 2:1 mux symbol?	Inputs A 0 1 7 Output based on the v	eive of the select signal
	Statement Statement Statement	gets sent to output
	if (S==D): Y=A SABY Y=	SUT Equation
		SAB+ SAB+ SAB+
		SAB
Example of a regular schematic		A3(B+B)+B5(A+A)
for an if-statement?		AS+BS
	$\frac{\text{Diagram}}{1 + 1 + 1 + 1} + \frac{1}{1 + 1}$	
	SEL 201	
How could we replace this		N - N
diagram with a 2.1 mvx?	A , it signals output =	
3	→ A O · When S = 0, it signals output = B 1 · When S = 1, it signals output =	y = 6
	-> This mux diagram replaces / avoids having to draw that big	yer more complicated
	gate diagram.	
What is a 4:1 multiplexer ?	- A circuit that chooses an output from among 4 inputs, ba	sed on the value of a
(4:1 mux)	Sevect signal.	
	→ Since we need 4 signaling options, S must be a 2-bit wire	Mar Lan Sena a 2-011
	Signal (n=2,2° = 4" bit combinations")	
How does the 4:1 mux diagram	$\rightarrow E_X: For the Truth Table: S_X S_0 Y = 0 0 A$	
100K ?	A 00 When	S=0600, Y=A
	8 01 Y C 10 Y 2-bit wire 1 0 C 1 D When	S= 0601, y= 0
		S=0610, Y= C
	S 110 • When	S=0611, Y=D
How can you implement the	A-TO	
same truth table with	6-1-7	
a 4:1 mux made out of 2	s, y	
2:1 muxes?		
	5 31	


Definitions in Digitar	Logic
What is a literal ?	→ A single variable. May be complemented.
	→ eq A B Ā
What is a product term?	→ An AND of individual literals
	- eq ABC. But NOT ABC (because "BC" isn't a literal)
What is a minterm?	→ A product term in which all variables appear once.
	→eg ABE, ABE, ABE, or ABE
	→ but NOT A, AL, BC, etc.
How do you derive an equation	Truth Table 1. Write the mintern For
using minterns?	A B C F Mintern Mintern name each row.
	0 0 6 1 A & Z Mo Take the sum of the
	0 0 1 0 ABC My minterns for rows where output=1
	0 1 0 1 ABC M2 Equation
	0 1 1 0 ABC M3 F= ABZ+ABZ+ABC+ABC
	1 0 0 0 A GE My OR
	$1 0 1 1 A_{6} (M_{5} + (A_{5}B_{5}C) = 5 (M_{5}, M_{2}, M_{5}, M_{1})$
	1 1 1 ABC My
What is sum of products?	- When 2 or more product terms are summed (OR) together.
	$\rightarrow c.g. Y = AB + A\overline{c}$
	→ 6-1- 100 Y= (A+B) (C+A)
What is Canonical Sum of	- An SOP Form in which each product contains all literals , e.g.
Products form?	F=ABC+ABC+ABC
What is simplified Sum B	-> When you use boolean algebra to simplify the canonical SOP form, e.g.
Products form?	F= ABZ+ C(AB+ A(B+B)) => ABZ+ C(AB+A)
	=> G(AZ) + AL - AB => AZ + AL
What is a maxtern?	- A term in which all variables appear once, as literals DRA together
	→eq A+B+Z
	- To write the maxtern for a touth table row, sum the complement of cach
	literal's value together.
	$\rightarrow \epsilon_q : A B C Y$
	$0 1 0 1 \rightarrow \mathbf{A} + \mathbf{\overline{a}} + \mathbf{C} = \mathbf{Y}$

How do you derive an equation	1. Write the maxtern For	Tr	~~ ~	гаы	e		
using maxterms?	each row	A	Β	د	F	Maxterm	Maxtern name
0	2. Take the product of	0	ρ	ь	1	A+B+C	M
	the maxterms for rows	0	Þ	1	σ	A+B+T	m,
	Where output=D	0	1	σ	1	A+B+C	M ₂
		D	1	1	0	At B+Z	[™] 3
		T	D	0	0	A+B+L	Ma
		1	D	1	-t	A+B+C	Ms
		1	T	0	D	A+ B+C	m,
	Equation	1	١	1	1	A + B + C	M 1
	F= (A+B+Z)(A+B+Z)(1	A+B	+0	(A.	- 3+	د) ا	
	$F = \pi (M_{1}, M_{3}, M_{4}, M_{5})$						
Why does this derived equation	-> Creating the canonic		٥٩ .	Lave	tion	for F	
work?	F = ABC + AB						
	And negating both sid						
	F=ABC+ABC				<u> </u>	J	
	F = (A + B + Z)(A +)(A+B+C)	
	Actually yields the sam	me te	Lrm ¹	<u>.</u>			

K-Map Definitions	
What is an implicant?	- Any product term (RECALL: AD, BC, etc) whose output for a given
	Boolean equation is 1.
	> aka, in a k-Map, the terms that define any group of 1s.
Example?	A BC Implicants
	00 01 11 10 ABC BC
	$\circ \circ $
What is a prime implicant?	→ An implicant that is not a subset of any other implicant.
	→ aka, in a k-Map, an implicant that corresponds to a group
	which can NOT be covered by any other group.
Example?	#6
	00 01 11 10 red = implicants
	DI DI D CD, BC
What is an essential prime	→ A prime implicant where :
implicant?	• At least 1 element is not covered by 1 or more other
	prime implicants.
	- aka, in a k-Map, a group that is necessary to use in the final solution
	to coveran 1s.
c	
Example?	
	00 01 11 10 • red -> essential prime implicants, aka the
	00 1 0 D Final groups (in this case)
	01 0 1 1 0 · orange → Non-essential prime implicant.
What is an non-essential	- A prime implicant that :
prime implicant?	
	· contains ND elements which can't be covered by another

prime implicent group

Adder / Subtractor		
How can we label the parts of		d navia
a binary addition operation?		Column D sum (50)
	1 1 1 3.	Carry-out from column D $(C_{0,0})$; Carry-in to column 1 $(C_{in,1})$
		(olumn 1 sum (S1)
	5.	(my-out column 1 (Co, 1); (any-in to column 2 (Cin, 2)
		Column 2 sum (S_2)
	٦.	(arry-out from when 2 (Co, 2)
What is a half-adder	+ A circuit that ian add	there is a merit values A
	→ A circuit that can add	
Circuiti	The can add the 2 bits in	column 0 and output 2 things: Half Adder Co Circuit
	• The carry-out bit Co	
What is the truth table and	A B Co S	
equation (c) for half adder?	0000	S= AB+AB ~ A (B (exclusive DR)
•	0 1 0 1	$C_{o} = AB$
	1 1 1 D	
What is the circuit diagram?	A 🖸 🕇 🔪	<u> </u>
	BD	
What is a full adder circuit?	-> A circuit that can add toget	ther three one-bit values and output the sum S and the
	Со-ън С.	
		and the values of a column Co Full Adder (C
		erc was a CO-bit, eg colvmn 1:
	1 0 1	
		on in this EX are A, B, and C; (the CD-bit From previous column).
What is the truth table &	A b C; C _a S Ο ο b Ο ο	"Notice that when an odd \$ of inputs = 1 (1 or 3 inputs), S=1.
derived equation?		A 3-input XOR can be used to represent this
		S= A @ B @ Ci
	10110	$C_{b} = AC_{i} + AB + BC_{i}$ (K-Map used)

What would the finit adder Alagram look vike? Alagram look vike? Alagram look vike? Color yee create a sircuit Prov can yee create a circuit for Prov can yee create a circuit for Provide with 2's comptement, A-0 2: A + (-8). To Linary subtreat binary subtraction ? Provide an we making the ripple Provide an adder - submate Provide an we making the ripple	diagram look like? How can we create a circuit to add 2 4-bit values? (4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the Subtractor circuit? How do we create an adder-subtractor	A ⊡ A ⊡ C: □ C: □ C
How can we create a since it	How can we create a circuit to add 2 4-bit values? (4-bit Adder) How do we create a circuit for binary subtraction? How can be modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	C ₁ → For C _{0,3} C _{0,1} C _{0,0} , we can use 4 Full-adders to add together A ₃ A ₂ A ₁ A ₀ A and B. B ₃ B ₃ B ₃ S ₁ S ₀ A ₃ B ₃ S ₃ S ₁ S ₀ A ₃ B ₃ S ₁ S ₁ S ₀ A ₃ B ₃ S ₁ S ₁ S ₀ A ₃ B ₃ S ₁ S ₁ S ₀ A ₃ B ₃ S ₁ S ₁ S ₀ A ₁ C _{0,2} FA C _{0,2} FA C _{0,1} FA C _{0,0} FA C ₀ C _{0,5} FA C _{0,2} FA C _{0,1} FA C _{0,0} FA C ₀ S ₁ S ₁ S ₂ S ₁ S ₀ A ₁ C _{0,1} FA C _{0,0} S ₁ C _{0,1} C _{0,1} C _{0,1} C ₀ C _{0,5} FA C _{0,2} FA C _{0,2} FA C _{0,1} C _{0,1} FA C ₀ S ₁ S ₁ S ₂ S ₁ S ₀ → RECALL with 2's complement, A-B % A + (-B). To binary subtract 2 numbers A and B, we have to negate B and then add it to A. → Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perfom subtraction AND addition. How? By modifying it s.t. it can negate B.
How can we create a sirverit to add 2 4-bit valves? (4-bit Adder) $A_3 B_2 A_3 A_4 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6 A_6$	How can we create a circuit to add 2 4-bit values? (4-bit Adder) How do we create a circuit for binary subtraction? How can be modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	→ For Co,2 Co, Co, Co, we can use 4 Full-adders to add together A3 A2 A, A0 A and B. B3 B2 B, B0 A and B. B3 B3 S3 S2 S1 S0 A3 B3 S3 S2 S1 S0 A1 B3 A2 B, A0 A and B. Co,2 FA Co,2 FA Co,2 FA Co,0 FA Co,0 fA Co S1 Co,2 FA Co,2 FA Co,1 FA Co,0 FA Co S2 FA Co,2 FA Co,2 FA Co,0 FA Co S1 Co S2 FA Co,2 FA Co,2 FA Co,0 FA Co S2 S0 A2 B3 S2 S1 S1 A2 B3 S2 S1 S1 A2 B3 S1 S1 A2 B3 S1 S1 A2 B3 S1 S1 S1 A2 B3 S1 S1 S1 A2 B3 S1 S1 S1 A2 B3
How can we create a circuit \neg For C_{n_1} C_{n_2} C_{n_3} C_{n_4} C_{n_5}	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	→ For Co,2 Co,1 Co,0 A3 A2 A, A0 A and B.
How can we create a circuit \neg For C_{n_1} C_{n_2} C_{n_3} C_{n_4} C_{n_5}	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	→ For Co,2 Co,1 Co,0 A3 A2 A, A0 A and B.
(4-bit Adder) $B_{2}B_{2}C_{1}B_{2}C_{2}C_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S$	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	$\begin{array}{c} & B_{3} & B_{2} & G, B_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & & & & & & & & & & & & & & & & & & $
(4-bit Adder) $B_{2}B_{2}C_{1}B_{2}C_{2}C_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S$	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	$\begin{array}{c} & B_{3} & B_{2} & G, B_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & & & & & & & & & & & & & & & & & & $
(4-bit Adder) $B_{2}B_{2}C_{1}B_{2}C_{2}C_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S$	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the Subtractor circuit? How do we create an adder-subtractor	$\begin{array}{c} & B_{3} & B_{2} & G, B_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & & & & & & & & & & & & & & & & & & $
(4-bit Adder) $B_{2}B_{2}C_{1}B_{2}C_{2}C_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S_{3}S$	(4-bit Adder) How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the Subtractor circuit? How do we create an adder-subtractor	$\begin{array}{c} & B_{3} & B_{2} & G, B_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & A_{3} & B_{3} & S_{2} & S_{1} & S_{0} \\ & & & & & & & & & & & & & & & & & & $
How do we create an adder -submature How do we create an adder -submature 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =	How do we create a circuit for binary subtraction? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	A B S S S S S S S S S S S S S S S S S S
How do we create an adder-swheador How do we create an adder-swheador 33 How do we create an adder-swheador 33	binary subtraction ? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	 33 33 34 52 52 52 52 52 52 52 55 7 RECALL. With Z's complement, A-B % A + (-B). To binary subtract 2 numbers A and B, we have to negate B and then add it to A. 7 7 7 7 7 105tead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. *How? By modifying it s.t. it can negate B.
How do we create an adder-swhador How do we create an adder-swhador 33 How do we create an adder-swhador 33	binary subtraction ? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	 33 33 34 51 35 36 36 37 36 36 37 36 37 36 37 36 36 37 36 36 36 37 36 36 36 37 36 36 36 36 36 37 36 36 37 36 37 37 38 36 36 37 36 36 37 36 36
How do we create a circuit for binary subtraction? $\rightarrow RECALL.$ with 2's complement, A-B 2 A + (-B). To binary subtract binary subtraction? 2 numbers A and B, we have to negate B and then add it to A. \rightarrow Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. +How? By modifying the s.t. it can negate B. +How can we modify the ripple -2 RECALL: to negate a binary num, negate each bit & then add 1. $+How$? By modifying the s.t. it can negate B. +How can we modify the ripple -3 Solution: negate each input of B, and send in k=1 as the carry in for column D: $Subtractor circuit?+4 \frac{1}{2}+4 \frac{1}{2$	binary subtraction ? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	 S₃ S₁ S₂ S₂ S₂ S₂ S₃ RECALL. With 2's complement, A-B % A + (-B). To binary subtract 2 numbers A and B, we have to negate B and then add it to A. Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition, How? By modifying it s.t. it can negate B.
binary subtraction? 2 numbers A and B, we have to negate B and then add it to A. Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can negate B. How can we modify the ripple PlechUL: to negate a binary num, negate cash bit & then add 1 carry adder to create the Solution: negate cash input of B, and send in k=1 as the carry in for column D: Subtractor circuit? How do we create an adder-subtractor Circuit? How do we create an adder-subtractor Circuit? Solution: Let Cin, 0 = K, and use a 2:I mux with K as the signal, to determine whether to send B or B to the Full adder!	binary subtraction ? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	2 numbers A and B, we have to negate B and then add it to A. → Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition, "How? By modifying it s.t. it can negate B.
binary subtraction? 2 numbers A and B, we have to negate B and then add it to A. Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. How can we modify the ripple PlechUL: to negate a binary num, negate cath bit & then add 1 carry adder to create the Subtractor circuit? How do we create an adder-subtractor Circuit? How do we create an adder-subtractor Circuit? Construction: Let Cinpo = K, and use a 2:I mux with K as the signal, to deturmine whether to send B or B to the Full adder!	binary subtraction ? How can we modify the ripple carry adder to create the subtractor circuit? How do we create an adder-subtractor	2 numbers A and B, we have to negate B and then add it to A. → Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition, "How? By modifying it s.t. it can negate B.
→ Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) S.t. it can perform subtraction AND addition, How can we modify the ripple carry adder to create the Subtractor circuit? How do we create an adder-subtractor Circuit? How con we madify the circuit is perform both addition and subtraction How con we create an adder-subtractor Circuit? How con we create an adder-subtractor How con we create an adder-subtractor Circuit? How con we con	How can we modify the ripple carry adder to create the Subtractor circuit? How do we create an adder-subtractor	Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. "How? By modifying it s.t. it can negate B.
 Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. How can we modify the ripple RECRICE: to negate a binary num integate each bit & then add 1 Subtractor circuit? Const FA Const FA Const FA Const FA Subtraction Goal: Same circuit to perform both addition and subtraction Goal: Same circuit to perform both addition and subtraction Subtractor in courts 	carry adder to create the Subtractor circuit? How do we create an adder-subtractor	Instead of building a separate circuit, we can modify the ripple carry adder (diagram above) s.t. it can perform subtraction AND addition. "How? By modifying it s.t. it can negate B.
adder (diagram above) s.t. it can perform subtraction AND addition, "How? By modifying it s.t. it can negate B.How can we modify the ripple $\neg RECRUE:$ to negate a binary num inegate each bit & then add 1carry adder to create the subtractor circuit? $\neg Sourtion:$ negate a binary num inegate each bit & then add 1Corry adder to create the subtractor circuit? $\neg Sourtion:$ negate a binary num inegate each bit & then add 1How do we create an adder-submater circuit? $\neg Sourtion:$ negate circuit to perform both addition and subtractionHow do we create an adder-submater circuit? $\neg Goat:$ Same circuit to perform both addition and subtractioncircuit? $\neg Sourtion:$ Let $C_{in,0} = K$ and use a 2:1 mux with K as the signal, to determine whether to send B or B to the full adder!	carry adder to create the Subtractor circuit? How do we create an adder-subtractor	adder (diagram above) s.t. it can perform subtraction AND addition. "How ? By modifying it s.t. it can negate B.
"How? By modifying it s.t. it can negate B.How can we modify the ripple"Richicle to negate a binary nym_inegate cach bit & then add 1carry adder to create the"Solution: negate cach input of B, and send in k=1 as the carry in for column 0:Subtractor circuit? $a_1 = a_2 = a_1 + a_1 + a_2 + a_2 + a_2 + a_1 + a_2 + a_2 + a_2 + a_2 + a_1 + a_2 $	carry adder to create the Subtractor circuit? How do we create an adder-subtractor	How? By modifying it s.t. it can negate B.
How can we madify the ripple $\neg RECALC:$ to negate a binding num, negate each bit & then add 1 carry adder to create the \neg Solution: negate each input of B, and send in $k = 1$ as the carry in for column 0: Subtractor circuit? $A_3 = \frac{B_3}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_3}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_3}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_2}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_1 = \frac{B_2}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_1 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_1 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac{B_1}{4}$ $A_1 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_2 = \frac{B_1}{4}$ $A_3 = \frac$	carry adder to create the Subtractor circuit? How do we create an adder-subtractor	
carry adder to create the \rightarrow Solution: negate each input of B, and send in k=1 as the carry in for column O: Subtractor circuit? A_3 G_{3} G_{2} G_{3} G	carry adder to create the Subtractor circuit? How do we create an adder-subtractor	TO TREGATE & DITION TIVE INCLUTE CHEN ON A MANAGE
Subtractor circuit? Subtractor circuit? $C_{0,3} \leftarrow FA \leftarrow C_{0,2} \leftarrow FA \leftarrow C_{0,1} \leftarrow C_{0,2} \leftarrow FA \leftarrow C_{0,1} \leftarrow C_{0,2} \leftarrow FA \leftarrow C_{0,1} \leftarrow C_{0,2} \leftarrow FA \leftarrow C_{0,2} \leftarrow FA \leftarrow C_{0,3} \leftarrow C_$	Subtractor circuit? How do we create an adder-subtractor	
$\begin{array}{c cccc} C_{0,3} & FA & C_{0,2} & FA & C_{0,1} & FA & C_{0,0} & FA & & & & & & & & & & & & & & & & & $	How do we create an adder-subtractor	a ⁰ 3 Un R Ba
How do we create an adder - subtractor $C_{0,3} = FA$ $C_{0,2} = FA$ $C_{0,1} =$		
How do we create an adder-subtractor $\xrightarrow{3}$ Goal: Same circuit to perform both addition and subtraction circuit? $\xrightarrow{3}$ Solution: Let $C_{in,0} = K$, and use a 2:1 mux with k as the signal, to determine whether to send B or B to the full adder!		$C_{0,5} \leftarrow FA \leftarrow C_{0,1} \leftarrow C_{0$
circuit? Solution: Let Cin, o = K, and use a 2:1 mux with K as the signal, to determine whether to send B or B to the full adder!		
circuit? Solution: Let Cin,o = K, and use a 2:1 mux with K as the signal, to determine whether to send B or B to the full adder!		
whether to send B or B to the full adder!	دنددميد]	
		- Solution: Let Cin, 0 = K, and use a 2:1 mux with K as the signal, to determine
" IF K=O: binary addition, 2:1 mux outputs B		
		· IF K=O : binary addition, 2:1 mux outputs B
if K = 1: binary subtraction, 2:1 mux outputs B		
A ₃ B ₃ A ₂ B ₂ A ₁ B ₁ A ₀ B ₀ B ₀		13 ¹⁶ 3 A A A A A A
$C_{0,3} \leftarrow FA \leftarrow C_{0,1} \leftarrow FA \leftarrow F$		

 \$2

 \$

Uhat is an alternate way implement Adder-Subtractor?		- N	J			f az: . = N			50 -	N (be	Dean rules	5
, , , , , , , , , , , , , , , , , , , ,	-					ĸ,						
						alition)	R	. OK	= R			
						ot et this						
1			A3 B	1			·,			- 6	N 2.	
ow would this diagram look?						A_ B2		ì	<u>,</u> ,		A ₀ B _b	
			Ę	2		Ÿ			Ÿ		- Y	
				,								
	C	←	FA	_ <u>c</u> e	,2	te n	<u>د</u> ،	<u>,1</u>	FA	ر», 0 ۲	FA	←
	0,:					* *		- L	F A 5 1		•	
			\$3			Š2			S1		Š,	
	_											

Comparator and Shifter - A circuit that determines whether the 2 inputs are equal What is an equality comparator circuit ? n= A of bits in the input Equality no diagonal line = default 1-bit (omparator a inputloutput Equal 7 > Notice that when comparing 2 1-bit inputs, A OB (XNOR) = 1 when A=B and How would you design a circuit O when A != B: to compare 4-bit inputs and output В ь D 1 if they are equal? 0 D 0 💿 εqual - Alternatively, we can save transistors by converting the AND gate to a NDR gate and subsequently turning the XNOR gates into XDR gates. - Since n=4, shifting an input A by more than n-1= 3 bits will always produce 020000. How do we design a circuit to So we only need to support the Acc1, Acc2, and Acc3 operations in our perform a left-shift on a 4-bit input? circuit. · EX: A = DUIDI A <21 = 1010 A 42 3 = 1000 A 22 = 0100 A22 4 = 0000 - Solution : Have a 2-bit "shamt" input that acts as a select signal to the output Y. It's 2 bits, so can represent up to 4 values. Left Shift 4 Y K result number to perform shift on 3:6 shamt - # of bits to shift by What would be the fruth table? - Let A, A, A, depicture value of A, and same for Y. Output Valve AI AO Y3 Y2 Y, Y, The diagram? -O Y3 A, A. Shift A-3 A-6 Amount A, A, D Q Y2 Α, 1

O A A

A O

D

00

2

3

O Y1

O Y0

What is a boolean unit?	- A circuit/logic unit that can perform 4 boolean operations (AND, DR, XOR, NOR)
	- Encompasses the logic for all 4 operations, and uses a 2-bit control signal
	(RSLALL: MUltiplexers!) to tell the circuit which operation to perform.
	A B to to
	Boolean
	Bool 2 Unit
	20

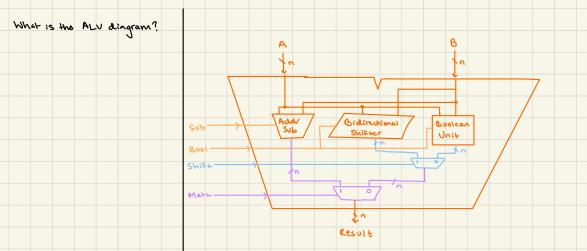
operate? Bool Operation Expression 00 AND A8 01 OR A+B 10 XOR ABB 11 NOR ABB I10 XOR ABB I11 NOR A+B I11 NOR A+B	How does the Boolean Unit	- The	valve of t	the bool select sin	ynal indicates whi	cn operation to	perform:
Image: Contract of the second seco	operate?		Bool	Operation	Expression		
ID XOR AGB			00	AND	AB		
			01	OR	A + B		
			10	XOR	AOB		
-> The unit will perform all of the poeralisms, and then output the one that was requested			- N	NOR	A+B		
		-> The	unit will	perform all of the	pperations , and +	hen output the or	ne that was requester

_

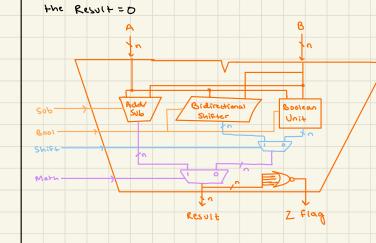
What is the diagram for a		based on the value of "bool"	
3			
boolean Unit?	BUT		

ๅ

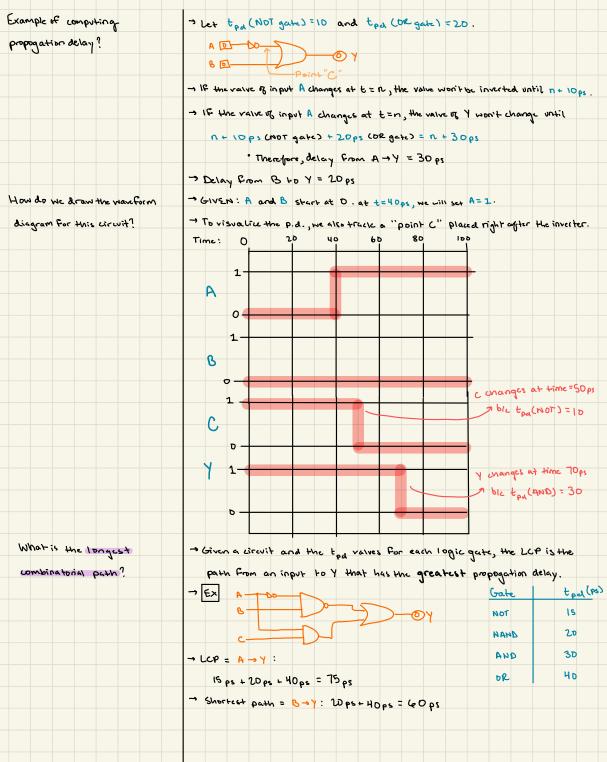
10 11/


			6
Reo	١.	б	+

What is the	Bidirectional	> A circuit/10gic unit that can perform 3 shift operations: Left shift, 10g	ical right
shifter?		shift, or arithmetic right shift.	
		- Socomonasces the local for all 3 possibles and uses a 2-bit control si	ional to tell


the c	irevit v	which	operation	+01	perform.
-------	----------	-------	-----------	-----	----------

RECALL: What is a "logical"	Operation	Expression	Meaning	Example
VS "arithmetic" right shift ?	logical right	A >> B	Shift B to the right by A bits,	1100 >>2 =
	SNIF+		and pad the left side with Os	2
				0 0 1 1
	aritumetic right	A >>>B	shift B to the right by A bits, and pad	1100 >>> 2 =
	SNIFT		the left side with the MSB of B!	
			• if MSB(B)= 1, B is neg., so we fad	
			with 1s. • (F MSB(B)=0, then B LCA & B LCCA	


How does the bidirection of	→ The 2-bit-sele	ect signal "boi	ol" indicates which	n operation to perform :	
shifter operate?	the left bit &		ration Expres	we only need to perfor	rm 3
	(Boon [2]) tells you the	OD Lefts		diff operations	
	direction of the	O I NON			
	Shift (L or R)	1 D logica	shift		
		L a citum	shift B>>>	4	
		I The right	t bit tens you the typ	pe of Shift Lingic or arithmetic)	
	control		<u>\</u>		
	(Signar) Bool -	2 Bidire	utiona)		
		Shift			
		20			
		result			
What is the add/sub?	→ RECALL: The e				
	- Uses a 1-b			- which operation to perform	۸.
		peration f	-xpression control signal	to to Sub Add/Sub	
				<u>x</u>	
	1	Sub A	- B	Y	
What is an Arithmetic	- A circuit (logie	unit that can per	Form add sub, bidire	ectional shift, AND boolean o	perations !
Logic Unit ?	- The value of t	he Shift and	Math select signal	s are used to indicate whi	ch
	operation to p				
What are "Shift" and "Math" ?	· Shift L	1-67+): if SM	ift = 1 , perform a	shift operation based on th	ne valve
				operation based on the volve	
	Bool .				
		- h: h) : : 6 Mas		Maleur as have a on the very	of 54-
				addisub op. based on the value	
			m a boolean or shi	ift op. based on the values of t	ONICT
Table of an analysis in 1		B001.			
Table of all operations in the ALU?	Math Shif		ool Operation	Juben Math = 1, we don't can	re ab
	1 X		X A+B	the volves of Shift and Bo	oline
	1 X	-	X A-B) just need to know if doing AD	
	0 1	· · ·	BLEA	When Math = 0, we don't ca	re ab
	0 1	X 1	A <<8 0	the raive of Sub.	
	0 1	X	1 B>>>A	>	
	0 0	× 0	O A AND B		
	0 0	× 0	ADR B		
	0 0	X I	D A XOR B		
	σσ	× 1	1 ANDR B		

What is the ZFlag? - A component of the ALU that outputs logic 1 if & only if

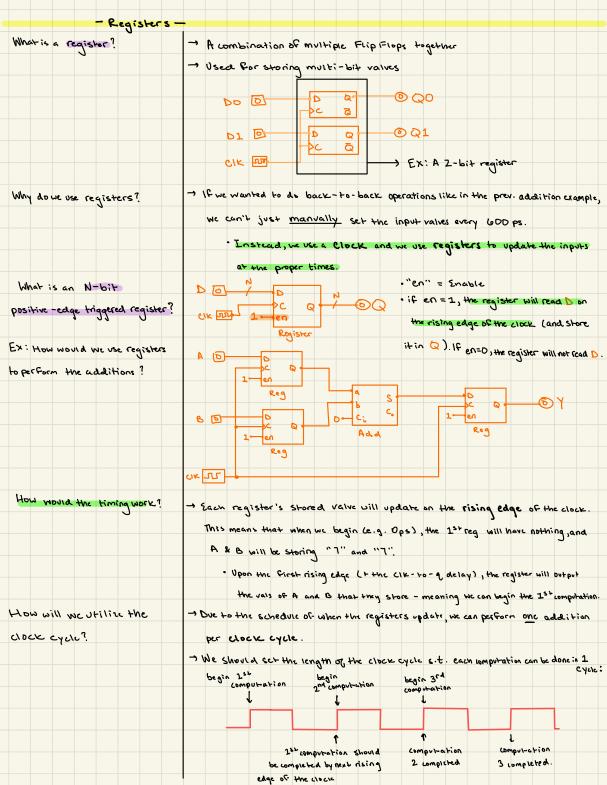
Wave form Diagrams	
What are wantorm diagrams?	- A way to represent the values of Dur signals over time.
	- Each one-bit signer will have its own waveform.
How does a waveform look?	- 1 ite a same wave where a low value = 100 is D and a high value = 100 is 1;
	→ Like a square wave, where a low valve ≈ logic D and a high valve ≈ logic 1: 10gic 1 Falling edge
	- Failing - Edge
	logic D Kising edge
What are rising and	→ Risingedge: when a signal "rises" from logic low (0) to logic high (1).
falling edges?	> Falling edge. When a signal "Falls" From logic high [] to logic low [D].
Example of a	> Take the Following circuit: A D to
waveform diagram?	→ Take the Following circuit: A 100 00 • At time = Ops, we will B 100 00 Y
	set input A=D and B=1
	•At time t=40ps, we will change input A to A=1. Time: 0 20 40 60 80 100
	1- A's Waveform
	B B's Ware form
	1 - Waveform
	8
What is propogation delay?	- The time taken for a signal to travel from in put to output
	• it doesn't happen immediately, as we've been assuming thus far.
	-> REASON: Time for electricity to travel through a wire; capacitirs
	charging & discharging, etc.
	-> Denotred : tod = time of propogation delay.
How does propogation	> When we change an input (e.g. A or B), the change in the output's warform
delay affect our Waveform	diagram won't be reflected immediately - ble First there is a delay of 20 pictector
diagrams?	-> The exact value of the For different logic gates will be provided by Lece; don't
	need to calculate.

Flip - Flops	3.05 mm (normal highlighter)
What is a D Flip Flop?	→ A digital electronic circuit that is used to delay ("D"=delay) the change
	of state of its output signal using clock timing.
	> Diagram: D ? the value we want to store
	C Q = the stored value (from D) at any given point.
	· Q = Inverted Stored Valve
	· C = the Clock; determines when D is stored.
What is a clock?	A one-bit signal that oscillates (or "toggles") back and forth between D
	and 1 at a constant/consistent pace (e.g. "Clock period = 100 ps")
	→ The purpose of the clock is to ensure that our circuits stay in sync.
What is a period?	RECALL COLLUIUS: The period of a clock is the time between one rising edge and
	the next:
	The period is how we define/quantify the speed of a clock je.g. "A clock with
	CLOCK period = 100 ps".
	The period determines how Fast our circuit runs; the shorter the period,
	the faster our circuit. 2. Doe itime of dree derived .
What are the 2 types DE	2. Positive-Edge triggered:
D Flip-Flops ?	Q stores the value of D when the clock goes from 0-21
	² Negative - Edge triggered:
	• Q stores the value of D when the clock goes from 1-0
	Q updates on every falling edge of the clock
How does a positive-edge	- Basically, we have 1 or more in puts and some logic circuit that outputs a value
D Clip-Flop work?	D based on the inputios) - e.g., a NAND circuit, a full adder, an ALU, etc.
	-> The Flip-Flop adds a variable Q which starts at some specified value (e.g. D)
	and then , every time the clock has a rising edge - ake every p seconds, where p=
	the period length-, the value of Q is updated to equal the value of D at that point in time.
	Time Unis) 0 4 , 3 12 16 20 24 other clock has a period
Example of a waveform diagram	bç 4 ns
For a pos. edge-triggered	cik : Every time clock has a
flip flop?	rising edge, check the
	D Veive of D and change
	Q (if needed). Notice that D=0 at both
	Q indice that DEO arborn indiceted clock rising edges

What is Clock -to-Q	-> The amount of time that it takes for the "update" of D's value to appear on
delay?	the output (Q) after the clock trigger.
	- Aka, the propagation delay for Q - it doesn't immediately update when
	Clic goes from 0 -> 1 there is a tool in between.
Example?	- The same weveform diagram from the previous ex, but with clk-ro-delay = Inc:
	Time 0 4 38 12 16 20 24

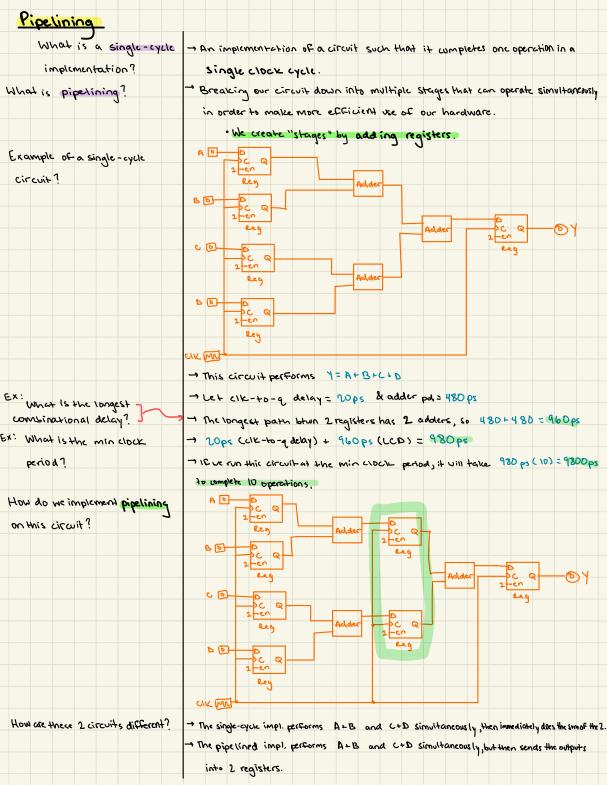
Registers Motivation: Back - to-back additions

CIK


D

Q

How would we perform back-to-	-> Let tpd for our adder = 600 ps - meaning that after we input A and B, it will
back additions with one adder	take 600 ps for a value and a carry-out bit to be output.
	→ EX: Performing 1+7, 18+7, and 30+8, back-to-back.
	a , , , , , , , , , , , , , , , , , , ,



Whatare the steps to doing this?	1. At	t time	t=Ops, set l	A=7 and	B=7.1n	itially, S	and Co=D.	
5	2. W	e can't	shart addition	on 42 unti	il the cir	cuit outp	ots S=14 - 600 ps bic of	tpd.
	9	n+ t=6	ooops, vic can	now chang	ye A=18	and B=7		
	3. A	+ 6= 12	DDps, S has ve	pdated to	= 25.No	w we are re	ady to perform the next i	sp. So we
	ج ا	et A = 3	oo and B=8					
	^{4.} 01	nce we a	re done u/ thi	s last one	, we han s	iet A=D	and B=D	
		Tim	e (ps)	A	ß	S	<u> </u>	
			0	٦	٦	σ	Ø	
		6	DD	18	٦	14	Ø	
		17	200	30	8	25	ο	
		19	800	σ	ο	38	0	
	\∩	+otal	performing	these	3 operat	tions to	ok 1800 ps.	
			. 7					

Timere		
Timing		
Example of performing		
back - to - back additions	Reg	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
with registers?	B D D	
	1 - en	Add Reg
	Reg	
	UK JJ	
	- In this Ex, we will perform 30	2+8, 18+7, and 7+7. We will complete one addition per
	Clock cycle.	
What is the starting state?	-> All values = 0	
What happens in Cycle 0?	- On the Rising Edge , the regis	sters will update to hold values for A and B:
		• next_B = 8
		, the values stored in registers will get (tored in Q:
	• next-A = 30	0 cent - B = 8
	• wrc_A = 30	
		delay (Add pd), the adder will but put the sum of $Q(A)$
	and Q(B): • next _A = 30	• next - B = 8
	• wr. A = 30	• wrcb = 8
	· cocc_ som = 38	· prev_svm=D
		tput Y until the next rising edge (plus elk-to-q deky)
		to go through that final register.
What happens in Cycle 1?		ing lage of the clock, when the new operands are sent in:
		• next - 0 = 7
	• curc_A = 30	• W(C) = 8
	• com_som = 38	• prev_sum= 0
	-> After cik- to-q delay :	
	$n_{cx} + -A = 18$	• next - C = 18
	• curc_A = 18	• wrch = 1
	· COLL - 20W = 38	· prev_sum= 38
	(Now, the value of the first a	ad operation is "available")
	→ After Adder pol:	
	• next-A = 18	• next - B = 7 (the new sum is output by the
	81 = A_7200	· wrcs =] adder)
	· CUTE_ SUM = 25	• prev_sum= 38

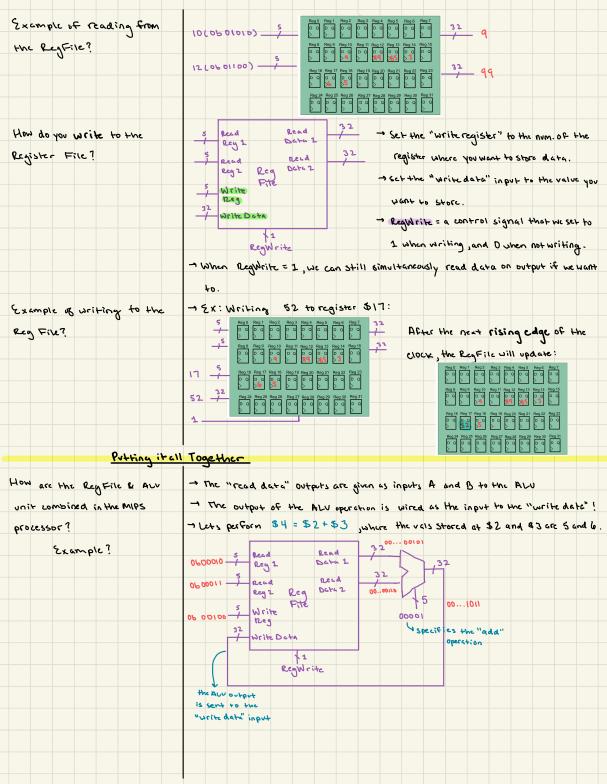
What happens in Cycle 2?	-> On nex+ Rising Ldge :		
	next-A = 7	• next -B = 7	
	· curc_A = 18	• wrcB = 1	
	· com_som = 25	· prev_sum= 38	
	> After elk-to-q delay:		
	next-A = 7	• next -B = 7	
	• wrcA = 7	• wrch = 7	
	· com_ som = 25	· prev_sum= 25	
	- After Adder pd:		
	next-A = 1	• next-B = 7	
	• curch = 1	• wrch = 1	
	· COLL SOW = 14	· prev_sum=26	
What happens in Cycle 3?	- After the next rising ed	ge & CIK-to-q delay, the sum 7+7= 14 will be	e
	Sent to Y. i.e., prev-s		
How long is the clock cycle		the clock cycle - aka time between one rising edg	د
period?	and the next - based on o		
		period at which the circuit will work properly, so a	<u>ر</u>
		any velve 2 Min. clock peniod.	
What is the minimum clock		shortest) time within which the circuit can complete	
period?	one operation.		
		cik-to-q delay of the final output register when	
How do up colouiste the sets clock	Calculating the min		
How do we calculate the min clock		-to-q delay of the input registers +	
period in this example circuit?	qda	der propogation delay	
		I ble the longest path has I adder	
How do we calculate the min	- min clock period = clk	-to-q delay + longest combinational delay	
clock period in general?			
What is the "Longest		the longest path between 2 registers	
combinational delay"?	· AKA longest con		
	Basically, the ant of tim	es it takes for each operation unit in a path	
	between z registers		
	- DOCS NOT include the clk	to -q delay time of the registers.	
Whet is the max clock	→ 1/min clock period		
C. 1			
Frequency?			

EX:	
EX: How dues the pipelined	-> GIVEN: CIK-+0-q delay= 20ps and Adder pd = 480ps
circuit work?	-> We will set our clock period to 500 ps & do these operations, starting at t= 0 ps.
	2 + 3 + 2 2 +
	3. 10+10+20+20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	L DIC D
	2 c Q c Adder C Q
	b b ab b c c c c c c c c c c c c c c c c
	CIKE (MIL)
What will happen at	- At the beginning, nA, nB, nC, nD will hold the operands for the 2 st addition.
t= 20ps ?	-> The registers will update to reflect the input values :
	nA, CA =10 nC, CC= 8
	nB, cB = 9 nD, cD = 7
t = 500 ps ?	-> After adder pd, the outputs are updated.
	> Additionally, since we broke our circuit into 2 stages of addition, we can now
	sturt operation 2!
	$P_1 = \partial A_2 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial J = A_2 \cdot \partial J = A_1 \cdot \partial J = A_2 \cdot \partial $
	• nB= 4 • cB= 9 • cCD = 15
	· n C = 3 · C C = 8
	$r_{\alpha}p = 2$ $r_{\alpha}p = 1$
t = 520 ps ?	
	~ The inputs for op 2 move pact the registers and the inputs to the 2nd adder
	also more past the registers.
	-> Why? Ble t= 500ps was the rising edge of the clock, and then it took 20ps
	of circ- to- q delay for the registers to update.
	- nA= 5 · cA= 5 · cAB=19
	• nB=4 • cB=4 • cCD=15
	• nC= 3 • PrAB = 19
	$nD = 2 \qquad cD = 2 \qquad prcD = 15$
t = 1000 ps ?	-> 480ps later, all 3 of the adders have performed & output values.
	-> Now, we can also start operation 3!
	$\bullet nA = 10 \qquad \bullet cA = 5 \qquad \bullet cA = 9 \qquad \bullet cSum = 34$
	$\bullet nB = 10 \qquad \bullet cB = 4 \qquad \bullet cCD = 5$
	• n C = 20 • c C = 3 • Pr AB = 19
	$\cdot nD = 20 \qquad \cdot cD = 2 \qquad \cdot prcD = 15$

2				
t = 1020 ps?	→ After the R.E. at t=			
			D For op.2, and At	-B+C+D for op. 1.
	- Operation 1 is now (complete.		
	• n A = (o	· cA = (0	$\cdot c A B = q$. csum = 34
	• nB = 10	• cB = 10	• c C D = 5	· pSum = 34
	· n C = 20	· c c = 20	PrAB = 9	
	• n D = 20	· c D = 20	• prc = 5	
+= 1500 ps?	-> All 3 adders perfor	m addition opera	tions & output valv	دد.
	• n A= 0	• cR = (0	· c # B = 20	• csum = 14
	• nB = 0	· cB = 10	· c C D = 40	· pSum = 34
	· n C = 0	· c c = 20	• pr A B = 9	
	0 = Qn	· c D = 20	· prcb = 5	
+= 1520ps ?	-> The values of A+B	, and C+D For	op.3 and A+B+	C+10 for op.2
	get sent through th	ne registers.		
	-> Operation 2 is now	-		
Ex: How many clock cycles did	-> It took 2 clock	ycles (Op. 2 was	done at 1000 ps, and	our clock period was
it take to complete 1 operation?	500)			
Exi What is the longest	-> The longest circuit &	setween 2 registers 1	nes 1 adder, so LC	P = 480ps
combinational path (delay?		7		
EX: What is the min clock period?	-> 20 ps(cik-to-q del	44) + 480ps (L	(D) = 500 ps	
EX: At the MLP, now long will it	-> OP 1 Finished at 10	00 es, but possible	ans 2 and beyond wil	l figish at
take to do 10 operations?	1500,2000,2500.			
		(10+1) = 5,500		
Comparison of the single cycle &		Single Cy		
pipelined impls of Y=A+B+C+D?	longest comb. path	960 ps		
Add inter million O LANGELLD	min clock period	980 85	29002	
	# of cycles to complete 1		2	circuit ismuch
	Time to complete 10 ope at	800-	5,500 p	s foster!
What are the execution times For				
	To perform n opera		N	
both implementations?		(n) (clock period		
	ripelined: (r	1+1) (clock period		

Why is the pipelined impl.	-> Because it has a significantly smaller MCP.
usually fester?	→ n(x) v.s. (n+1)(x+2) the 2nd expression will OFTEN yield a smaller value.
	trics -
	-> Let SC-Y denote the single-eycle example circuit performing]= A+B+C+D
	and let PL-Y denote the pipelined example.
What is latency?	-> The amount of time it takes to complete a single operation, from beginning
	to end.
	· Ex= Latency of SC-Y = I clock cycle = 980 pe
	· Latency of PL-Y=2 clock cycles = 2+500 = 1000 ps
What is throughput?	- The number of operations that can be completed in a given amount of
	time.
	· PL-Y has a higher through put than SC-Y.
What is speedup?	- The measure of how much faster the pipelined impl. is in comparison to
	the single-cycle impl:
	SPEEDUP = Time to complete & ops on SC impl.
	Time to complete 2 Ops on Pipelined impl.
	· Ex: The speedup of operation Y=A+B+C+D for 10 operations =
	9800 ps (5500 ps = 1.78.

311 Quiz 1 Review

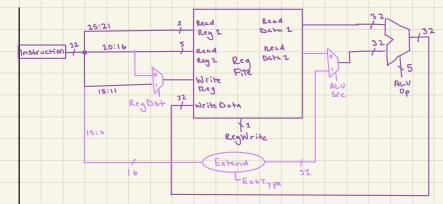

-TOPICS: K-Maps-including "terms", Multiplexers, Digital Logic terms - Cononical SOP, maxterns, minterns, Adder, comparator, shifter, NLV, Waveform diagrams, timings on FE diagrams.

K-Maps

-) '	Find	.the	lite	.دماء	that	. ومد	n 9.00.	up has	in cor	ท กะา	, and	OR	then	, for	the f	inal	term			BA	Ň	00	01	<u>۱۱</u>	סו
		5 RU																		D	D	t.	D	A.	X -
																				0	1	O	D	σ	×
								1s,an				વુલ	group	291						۱	١	0	o	1	١
	- C	29 con	mvs	7 pe	- 2	زواا	۽ رو.	9·1,	2,4,	8')									1	0	1	0	×	1
	• ٩	زهدته و	honb	must	be	as lar	ige as	possib	he																
	• \	¢ >:	- g-0	vps,	each	grov	y mus	it have	ct lea	-4 1	uni	que c	و 11.												
	• W	lays 1	-0 4	a p	arova	nd the	e fab	.1e :	1												_ (լ	
-, <u>,</u>	STEF											t	╡╞	┥┼	+	Η	++	-					FF	F	
		(reat			_			τ			Щ					F			E					j.	
								ne imp																	
			JAC	a11 1	non-	د3501	nticl	prime	. imp	lican	+5 05	nee	drd	48 c	שיער	all 1	٤.								
Im	plice	unts																							
→	(Wb)	از دمل	* = (any	prog	NA	win	tern i	n the	SDF	p tar	~~ o'	fan	وحامه	iti on	•									
		• E:	ĸ :	γ =	MN	⊢ M	ND+	ND		= im	plica	nt		a \cc	ever	1 S=	vare	wit	ha	` l'	in	the	K-m	ap.	
٩	rime	Implia	ant :	- AV	pos	حنام	· gra	ups H								-									موارده
		noup					•	•							,		•								1
			0.			a) -							_	• - •		h									
7					.pv 20	417 -	grove	ps the	it cou	rer al	+ 1ec	154	DUG	MICI	herm	+111 477		0+	be (DVELEC	λ6	y ar	, othe	r pr	ime
		impli																							
	MJ	tiple	kers	5																					
->	Chor	ses,	ᡔ᠂ᡟ᠊ᠥ	ut k	مدوط		sele	ct sign	191:	A -			00				-	if s	s = 00), Y = 1	Α.;	f 5 :	= 01	Y = P	
										6-			01							, ^{y=c} ,					,
								ignal !	5	c-			0	-		Y				,			, -	.	
	musi	t be a						. 27		D			1	7											
		• ak	۹, ۲	(4 9	- 6:1-	`, <u>></u>	n					L	7	2											
													S												

Intro to MIPS	
RELALL: What is LOMP 311	Converting:
about 3	high-lever prog. languages Assembly, low-ever languages Machine Lode
	1 int square(int num) { 3 av stp_s(45ep) 1010111011110000000000000000000000000
	10 10<
	(human readable) (Machine readable)
What is MIPS?	-> Microproccesor without Interlocked Pipeline Stages
	→ A computer architecture & assembly language.
	· Historically used in routers, embedded systems, gaming consoles leg PlayStation)
	A vitte old loutdated today.
	- All assembly longs are vong similar , but MIPS is the easiest to learn. Once you know
	MIPS, you can pick other large up very easily.
What are some other computer	- x86 : Developed by Intel, commonly used in servers, desktup & laptop
ar chitectures ?	computers.
	· All Macbooks from 2005-2021 use X86_ 64 architecture on their
	64 - bit CRUS.
	- ARM: Used in most smartphones & tablets.
	· All Macbooks after 2021 use the arm 64 arenitecture.
What is an Instruction Set	- A set of rules that define the interface between the hardware and software,
Architecture (ISA) ?	providing a way for the sw to tell the hw what to at.
	• A full vocabulary that combines instructions with registers, addressing models,
	and data types
	-> Every ISA is specific to a processor architecture ; for ex, the processor architecture
	assoc. 41 MIPS is RISC.
	→ RECALL: COMP 211 notes: "Compilation System overview", "Compiler step".
- ALU Un	
What is the ALU Unit in a	- A unit that performs ALL the ALU operations, on a 32-bit input.
MIPS processor ?	. This is the thing that we built in Lab 2!
· > 4.0003207 ;	
	The ALU Unit employs a 5-bit ALU Dp Control Signel Input that tells it which
	aperation to perform 32
	B - + ALV Result
	32 +5 ALU OP
	90

What are the control signals	-> AW Operation Function
associated with each operation?	06 00000 AND
	$0b \ b0\ 100 \ OR \ A \ D \ 32 \ 32 \ 32 \ All \ All$
	06 01100 XOR B B Result
	06 00001 add ALU Operation
	Ob 10001 SUb * assume all registers are connected to the sume clark.
	06 00011 set on less than
What is the "set on less than"	-> Performs the operation "A + B".
(SLT) operation?	IF A< O, ALV RESULT = 1. IF A>= B, ALV RESULT = D.
How does the ALU work?	- It performs one operation per cycle.
-M105	> For each cycle, we must set 3 inputs: A, B, and ALUDP Processor -
RECALL: What is a register?	- an operand which has to do with memory (hardwarc
	→ MIPS defines 32 general purpose registers, \$0 through \$31, each of which have their
	own meanings. Each one can hold a 32-bit value. \$D always holds val=0.
What is the Register File?	- A small piece of memory for storing intermediate results of computations.
	- stored in hardware (aka the registers)
	- Contains the 32 32-bit registers, \$0 to \$31:
	Reg1 Reg2 Reg2 Reg3 Reg4 Reg5 Reg7 Reg7 <th< th=""></th<>
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	Reg 17 Reg 18 Reg 19 Reg 20 Reg 21 Reg 23 Reg 23 Reg 24 Reg 24 <threg 24<="" th=""> <threg 24<="" th=""> <threg 24<="" th="" th<=""></threg></threg></threg>
	Reg 24 Reg 25 Reg 26 Reg 27 Reg 28 Reg 28 Reg 29 Reg 30 Reg 31 D<
What is the MIPS processor ?	A piece of logic that allows us to perform dependent operations!
	e.g. a = 5 + 4, b = 7 + 8, and c = a + b
	-> How? By combining the ReqFile with the ALV Unit so that we can read
	From and write to registers.
How do we read from the	-> Set We "cout gos," touth in the Entlithing of
	5 Read Read 32 Set the reliancy infinite the 3-bit val. St Reg. 1 Data 1 the number of the register you want to read.
register file?	Req
	5 Read 32 monte stated of that register will appear
	on the corresponding output.


R-Format Instructions	32-bit values stored on Read had and read for
	S bits Read Ray 1 and Read Ray 2
RECAP : What are the inputs	which registers 5 Read Read
& outputs of a MIPS processor?	to read from 15 legs 32
	Pear Dea Deta 2
	5 bits specifying 5 which register to 5 Write 7
	write to 32 5 bit ALUOp specifying
	/ Write Dotta which operation to
	1 1-bit value specifying perform on Read Data Regulation if we are writing to 1" and "2"
	a register
	, 32-bit output & AW Op, stored in the write Reg
How is assembly code turned	- An assembly instruction can be translated into a 32-bit binary string
into binary code?	that can then be input into the MIPS processor!
What are r-format	→ The 32-bit data is broken up into several "sections"
instructions?	→ Assembly instructions to perform an operation where the registers are the operands.
	e.g., not adding a constant val, but rather 2 vals air stored at
	2 registers.
What is the syntax of F-Format	(operation) [Srd], [Srs], [Srb]
instructions?	2. "Operation": the operation being performed (e.g. AND, odd, etc.)
	2. & rd : the destination register ; where the output of the operation will
	be stored.
	3. \$ 15, \$ 16 . the source & target registers whose stored values will be the
	inputs to the operation (e.g. "R" and "B")
	$\rightarrow E_X: \qquad add \qquad \$4, \qquad \$2, \qquad \3
	the operation the destination the source
	operand operands
	Field: Opcode rs rt rd shamt funct
What are the fields of the	Bits: 31:26 25:21 20:16 15:11 6:10 5:0
32-bit binary instruction?	(6 bits) (5 bits) (5 bits) (5 bits) (5 bits)
	-> The 5-bit binary nums of the 3 registers in the operation (rs, rt, rd) are
	stored in the "rs", "rt", and "rd" Fields.
What are the "opcode" and	-> They are specified by the ISA, and they tell the processor which operation
"funct" fields?	to perform.
	→ The values at opcode & Funct are used to determine the value of the ALUOP
	control signal.

What are the opeode & funct	Instruction	Opcode	Funct	ALUDA		
	add	000000 ₂	10 0000 ₂	00001		
fields for common operations?	sub	000000 ₂	10 0010 ₂	10001		
	and	0000002	10 0100 ₂	00000		
	or	000000 ₂ 000000 ₂	10 0101 ₂ 10 0111 ₂	01100		
	slt	0000002	10 1010 ₂	00011		
Example converting assembly	- EXAMPLE	-	-	add \$12	, \$7, \$10	
	1					
to binary?				a identify re	egister Fields:	
	-	\$12 = \$7 +	\$ 10			
		rd rs	rt			
	2) Fills	out fields :				
				-1		
	Opus	ode rs		rt i	rd shamt	funct
	100	00 000	111 0	1010 0	1100 0000	100000
		HNS: 06 101	00 0000 1	110 1010 011	0000 0100 0000	
	- The 32-611	- inst. is ta	ken as an	input and	then solit int	o substrings corresponding
· · · · · · · · · · · · · · · · · · ·						
How is the 32-bit r-instruction	to the dif	ferent fields	51		-	field bits of inst
interpreted by the MIPS processor?						funct 5:0
interpretade by the terrs processe.						shaml- 10:6
						rd 15:11
		in a the r	F &			rt 20:16
	the bits sp	elitying are s	sent			cc 25:21
	rs registe	erifying the ri r numbers are s eg 2 and 2				rs b. u
	to Read t	$^{-3}$			σ	plode 31:26
					Read 3	2
		25:21	5	Read Rey 1	Data 1	.32
	32	20:16	ş		neud 3	2 2 1
	Instruction 7		- /	Read Rey 2 Rea	0.000	
				Pit		5
			s 	Write Reg		100001
		15:11	32			
	the register bein	guritten)		Write Dota		
	to is given by H	ne bits assoc.		<u> </u>		
	with \$ rd			Regin	leite	
Summary: What are all of the	-> Synt-ax:	OP \$re	1, 5	srt, RC	aj = RErsj	OP RCrd]
R-format operations?						
		or] arenotes	Regence	J. W.J. J. C. V.C. 0	, THE CONTENTS S	tored at register rd.
	NAME			LATION		
	add			(rs] + RC		
	SUB			trs]-RC		
	and	R	(rd] = R	Crsj AND		
	or	R	[rd] = a	Crs) OR		: RCrs] = RCr+J, RCa]=1.else,RCa]=0
	NOT	R	.Crd] = 0	2 (rij Nor	RET+3	n
	sit	R	(rd] = ((RENS JERC	a: 1? (t+7	

L- Format Instructions	
What are i- Format instructions?	- where the instruction operands are a combination of a register and a 16-bit
	Constant (an "immediate" operand)
	→ Used when you want to perform an op between a register and an immediate
	value (i.e. a constant that is not in a register)
	· As opposed to r-type instructions, which perform operations between 2
	registers. result stored here
What is the syntax of an	[Operation] [Srt], [Srs], [immediate]
i-format instruction?	> In i- Former instructions, we need the last 16 bits of the inst. to be designated
	For storing the constant val, so we don't have an <u>rd</u> field. Instead, we store
	the result in the reg. specified by $\$rt$. We write to $\$rt$. $\rightarrow \xi_X$: $\$5 = \$4 + 12 \longrightarrow$ addi $\$5, \$4, 12$
	→ Syntax: R(rt]= R(rs) OP (immediate)
How do we set a register to	-> Using i-Format instructions with the source operand register \$0, since
a certain constant value?	it always holds value = 0 !
	→ {x: a = 5 → addi \$10,\$0,5 (\$10 now holds var a)
	6=3 addi 31, \$D, 3 (\$11 holds var b)
	C=a+b add \$12, \$10,\$11 (\$12 holds var c=a+b)
What are the Fields of the	
32-bit i-instruction?	Birs: 31:26 25:21 20:16 15:0 (6 birs) (5 birs) (16 birs)
	The Ard, shamt, and funct Eiclds are excluded to make room for
	the immediate value.
Example converting	→ 1NST: addi \$5, \$0,2
assembly -> binary?	Opcode TS TE immediate
	001 000 0000 1010 10100 000 000 100
	• ANS: 06 0010 0000 0000 0101 0000 0000 0000
What are the opeodes for	
i-format inst. operations?	Instruction Opcode ALV OP
	addi 00 1000 ₂ 00 00 1 andi 00 1100 ₂ 00 00 1
	ori 00 11012 00 0 0 0
	slti 00 10102 000 11

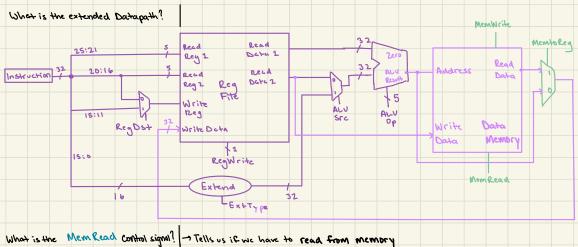
What will be input into the	- The 32-bit value stored at \$rs, aka RCISJ, aka "Read Data 1"
ALV for an i-instruction?	-> The 16-bit value specified for the immediate, 15.0 EXCLPT, we need to
	hit-recting it to an Litch Risis 32
	/32
	• The ALV takes 2 32-bit in puts extend (immediate) 32
	There are 2 ways to extend the immediate value:
	* Lero - extension
	* Sign-extension
What is zero - extension and	-> DEFN: pad immediate with 16 zeroes of the beginning.
when should we use it?	immediate (16) = P, A, A, S, A,
	immediate (32) = 00000000000000000, A , A , A , A , A ,
	- USE: For logical operations, where we do not want to preserve the decimal value
	of a binary & whose MSB=1 (aka a negative number)
	· and or i operations will use a zero-extended immediate
	Value
What is sign extension and	-> DEFN: pad immediate with 16 zeroes if MSB is 0, or 16 ones if MSB=1
when should be use it?	immediate (16) = A, A, A, S, A,
	immediate (32) =
	A 15
	(where A15 = MSB)
	7 USE: for arithmetic operations, where we want to preserve the decimal value.
	· addi and siti will use a sign-extended immediate value.
What are all up the i-format	NAME OPERATION
operations?	addi R[rt] = R[rs] + sign_ext (immediate)
	andi RCr+J= RCr+J AND Zero_ex1(immediate)
	ori RCrtj = R(rs) OR 200-ext(immediate)
	Siti RC+J=(RCrsJK sign_extlimmediate))?1:0
Unix done the data acity to the	→ OG Datapath For r-instructions:
How does the datapath to the	Instruction 12 20:16 3 Read Read 22
MIPS Processor change for	5 Write 10 15:11 32 Rag 00001
i-instructions?	
	> IF executing an i-instruction, there a 3 key differences:
	• The S-bit value denoting which register will store the result of the operation
	(alla the Write Reg) will be the \$rt instead of the \$rd.
	. The 2nd 32-bit input to the ALV will be the immediate instead of RCrtJ, aka
	"Read Data 2"
	The 16-bit immediate value will have to be either O-or sign- extended before being in put to the ALU.

How dowe modicy the MIPS	1) hu
	Add a 2:2 mux with a control signal that takes as inputs:
processor Hardware to execute	• The 5-bit value of \$rd (alka bits 15:11, alka the write register for
both R and I instructions?	r-instructions), AND
	• The S-bit value of \$rt (ake bits 20:16, area the write register For i-instruction)
	And uses a Reg Det control signal to determine which value will get sent to
	the Write Register input.
	27 Add a 2:1 mux that takes as inputs:
	. The 32-bit value RCrt] (alca "Read Data 2" axa the 2nd operand for
	(-instructions, AND
	• The 32-bit valve Extended_immediate (aka (extension + bits 15:0] aka the
	2 nd operand for i-instructions)
	And uses an ALUSIC control signal to determine which value will get sent
	to the second ALU input.
	3) A piece of logic that takes the immediate value (axa bits 15:0) as an input, and
	outputs the extended 32-bit imm. value.
	· It has an EXTYPE control signal that specifics whether the value
	should be zero- or sign- extended.
	25:21 S Read Read 32
	ley 1 Sam 1 31
	Instruction Reg 2 Reg Date 2
	Write File ALV ALV
	15:11 V 12eg Src Op RegDst 12 Write Data
	15:0 RegWrite
	Extend /
	16 LEXETY 00 32

Summury: Control Signals for	-> Whenever we are doing a boolean or logic operation land, or, nor, xor, add, sub,
all r & i inst operations?	s1+), Requrite = 1
	-> R-instructions:
	· ALU Src == O (taking R[rt] as the 2 nd source operand)
	· Reg Dat == 1 (storing the result in \$rd)
	· 5x+Type == X (DONT LARS) (no value that requires extension)
	-> 1-instructions.
	· ALUSIC = = 1 (taking bits 15:0 (extended), aka imm., as 2nd cource
	operand)
	· Reg Dat = = D (strong the result in \$rt)
	· Extinge == D for bookean operations
	· andi · ori · nori
	· Suttype == 1 For logic operations
	addi siti

MIPS Programming	
What are Labers?	- A way to "mark" sections of assembly code that you may want the program to be
	able to jump to or repeatedly execute. Like the beginning & end of a loop.
	· EX: For - 100ps.
Example?	→ loop.c: →loop.D.
	Sum $+ = 2, 2$
	$point" of i, 424 \leq j in 39$
	> We enclose the instructions in Voop. L's for -loop in a Label :
	addi \$10\$00
	uddi 48 \$0 D initialize subji, and terminating point
	addi \$99 \$05
	LoopStart: Laber "LoopStart"
	addi \$10 \$10 2 \longrightarrow Sum=sum +2
	addi \$8 \$8 1 -> i++ (i=i+2)
	Loopine:later "Loopind"
	addi \$10 \$10 10
How do we actually utilize the labels?	- with branch instructions that check whether the terminating condition (in
	this case i z=5) has been reached?
Whoture branch	-> Instructions that evaluate some condition. If the condition is true, they tell the
instructions?	
	program to "branch" to a different spot in the code. Specifically, they define a
	label that should be branched to if the condition is true.
	• EX: IF i= 5, and the for-IDDP & go to the label for the code to be executed
	after the loop ends.
What are all of the branch	Instruction Format Meaning: Branch to Label if
instructions?	Branch on equal beq \$15 \$12 Label \$15 == \$14
	Branch on not equal bre \$15 \$15 Label \$15 != \$14
	B.D greater than by to \$15 \$12 Label \$15 > \$12
	B.O. greater than or bge \$15 \$12 Label \$15 2 \$14
	eရာန)
	B.O. less than bit \$rs \$rt Label \$rs < \$rt
	B.D. less than or equal ble \$15 \$12 Label \$15 5 12
	-> Note that for Branch instructions, Regwrite = D !

Example 100p. b using	addi \$10 \$0 0	
branch instructions?	$ uddi 48 40 0 \longrightarrow i=0 $	
	addi \$9 \$0 5> terminate pt = 5	
	LoopStart:	
	beg \$8 \$9 LoopEnd if R[88] = R[89] - aka, if i=5, immediately	
	addi 38 38 1 IF not, continue to next inst. below.	
	j Loop Start	
		1 to
	added 310 410 10 beg. of loop affec executing the body.	
What are Native Instructions?	→ Instructions that are supported by the datapath (the MIPS hardware diagram the	ing)
	AKA inst. that have actual hardware support.	
	· Includes: all the instructions we learned up until now	
	Includes: beg, bre	
Whatare Pseudo Instructions?	-> Ones that aren't supported by the datapath ; thay only exist to make program.	s
	easier to read & write.	
	- when the program is assembled, pseudo instructions are converted to one or m	ofe
	native instructions.	
	·Includes: bgt, bge, bit, bleif \$9< \$8,10+ \$1=1	
Example of a pseudo instruction		
	ble 38 \$9 LoopEnd to SIt 31 \$9 \$8	
being convected to ancetize one?	if \$1=0,au \$9≥3 beq \$1\$0 LoopEnd branch to LoopEnd.	· 6,
	Else, don't branch.	
- Realist	jump to "LoopEnd" if \$8 < \$9	
	er Usage -	
What is register O (SD) for?	→ ALWAYS holds the value 0. Cannor be written to.	
	→ UseFul For when you need the value O(like initializing variables with addi SX \$D D))
What is register 1 (\$1) For?	-> Used by the assembler to resolve pseudo instructions.	
	-> Nos CAN write to this register, but the assembler may override the value when it need	ks –
	to resolve a pseudo-inst.	
	· Shouldn't rely on 81 to store values you might need later.	


MIPS Memory Model		
RECALL: What is the structure of	- Data stored in a "primary storage" component like RAM, accessible to the CPU	
a computer 's main memory?	via a BUS (communication system between diff pieces of hardware)	
	· Unlike Register data, which is stored in the register file which is actually	
	located in the CPU. Stack 1 mic	gher mory
	2. Stock: Used to manage Function calls & IDCal	ldreises
	variables.	
	· STRICK grows down Dynamic Data ²	
	2. Dynamic Data aka Heap: Osea Fordynamic Static Data 3	
	memory allocation.	wer
	HERP ATOWS UP	ne m. ddresees
	3- Static Data: variables allocated at compile-time.	
	· e.g., statically allocated arrays.	
	4- Text: Programs (aka actual code).	
	5. Reserved memory for the OS	
How does Memory compare	-> Memory	
to the Register File ?	· large · takes longer to access	
	NOT Part of the CPU	
	-> Register File:	
	· small · much, much, much faster to access	
	· part of the LPU	
	-> We need MM blewe can't store all of our data in the RE	
	-> We store values/ data that we are currently working with in the RF.	
What is the load word	- IN ; used to read 4 bytes (aka I word) of date from memory	
instruction ?	and store it in a register.	
	-> Iw \$rt offset(\$rs)	
What do Srt, offset, and	-> Srs : a register that carcady) holds a memory address.	
ers mean in the lw inst.?	-> offset : an immediate velve that is added to R(rs) to obtain the address	
	e.g., Iw \$rt 4 (\$rs) ≈ loading a word from 4+ Eaddr stored at	\$rs]
	-> s -+ : Where we store the 4 byte (32-bit) data that we read from addr	
F 1. C 12.0 1	(offect + RCrs]]	
Formula For the lu instruction?	· → R[Sr+] = M[R[SrS] + DFFS++], where "M" means Main Memory	1.

Example of the 1W instruction?	→ Let \$10=0x00004000, and let A= [5, 90, 100, 40, 11] be an int array stored at base
	addr. Oxbooo4000 (aka ACO)). The size of an int is 4 bytes.
	→ EX: IN \$11 8(\$10) will store the value 100 in register \$11.
	• \$10 holds 0x00004000 & offset = 8, so we want to read the data at
	6040000 - 9 - 0x0000 - 9 - 0x000
	· Since sizesf (ini) = 4 bytes, 0x00004008 holds the 3rd element of A.
What is the store word	- Sw; Used to Store 4 bytes (1 word) of data from the RF into memory!
instruct ion ?	→ Sw \$rt offset (\$rs)
Whetdo art, offset, and	→ \$rs : A register that (already) holds a memory address.
ers mean in the sw inst.?	-> offset : An immediate value that is added to REFED to obtain the address
	where we want to store the data.
	-> Srt: Holds the data/value that we want to store at the MM address.
What is the formula?	$\rightarrow M[R[\$rs] + offset] = R[\$rt]$
Example using sw ?	→ Let \$10=0x00004000, \$7=8, and let A=E\$,90,100,40,11) be an int array stored
	at base addr. Ox00004000 (aka ACO)).
	→ EX: SW \$7 12 (\$10) will modify array A into:
	A = [5,90,100, 8,11]
How do we store arrays in	- We store statically clibcated arrays in the static data segment (below the heap).
memory 7.	-> To store ANY data in the static data segment, we use the . data directive
	in our assembly code.
Example of using .data to store	. data
data in static memory?	The name of the A: . word 5 90 100 40 11
	Indicates the size of each element in the array. In this
	Case, the size is 1 word, also 4 bytes.
How do we actually get a memory	→ E.g., the value stored in Srs for load-word & store-word instructions.
address into a register?	-> ANS: with the load address instruction, la.
5	
What is the syntax of the la inst.?	la Stt Label
	· Gets the short addrees of the array variable specified by Lebel and stores it
	in Sct.
	. For an array, la gete the start uddress of the array.
Example using 10?	· data "h" is the Laber
	A word 5 9D 100
	In \$10, A

How do we store data in the	- Using the text directive	
text segment of memory ?		mbly code in the text segment, using the
	.text directive.	
Example of using the text	. data	
directive?	Stored in the data segment - A: . word 5 9D	10D 40 11
		e gets the start adde of A
	.tex+	
	Stored in the la \$10, A -	gets the value of ACD]
	text segment IN \$12, 0(\$10	»—————————————————————————————————————
Ex: What is an ossembly	-1 Let Arr = [10, 15, 100, 2,4]	
program to increment every exement	ex1.0	
in an array by 2?	.data	re store base addr of arr in \$10
	arr: .word 10 15 100 2 4	To set \$8 to be the "terminating point" of the
	.text	loop; since there are 5 elements in arr, once
	10 \$ 10 arr	we've incremented \$10 4 times, we will have
	addi \$8 \$10 20-	looped through all elements & are finished.
	Loop Begin:	end the loop (by jumping to "LoopEnd") when
	beg \$10 \$8 LoopEnd	- R(\$10)=R(\$8]
	1w \$6 0(\$10)-	- let \$6 Store value of element at adde \$10
	addi \$6 \$6 1	· increment the element by 1
	SW \$6 0 (\$10).	Store the new value at \$10 back in its spot (adde \$10)
	addi \$10\$10 4	- increment the "curr-address" by 4 to point to
	j LoopBegin	the next element in arr.
	LoopEnd.	
What is the Static instruction	-> The number of native instruction	s that a one time has.
Count ¹ .		do-instruction into a native one, & themcount
	→ Ex: ex1.0 has 9 static instruct	ode written Labels don't count.
	• every inst. is native except	
	• la \$6 arr resolves +0 -	ori \$10,\$1,0
What does the static inst.	- How much space the program tal	cesup in membry.
count fell us?		

What is the dynamic	> The # of native instructions that actually get executed.
instruction count?	→ E.g., if there is a for - loop that has 5 inst. & 3 iterations, the
	dynamic inst. count (DIC) = 5×3=15
	→ SX: ex2.0 has 3+6(5)+2=34 dynamic instructions.
What does the Dic tell us?	→ Gives us an idea of the nuntime.
	-> The DIC & SIC are 2 metrics to look at when trying to improve program
	efficiency.
How can we reduce the	ex1.0 ex1.0
instruction wount of ex1.0?	.data .data
	arr: .word 10 15 100 2 4 arr: .word 10 15 100 2 4
	.text
	la \$10 arr
	addi \$8 \$10 20 is native addi \$8 \$10 20
	LoopBegin: -> LoopBegin:
	beg \$10 \$8 LoopEnd IN \$8 0(\$6)
	w \$6 0(\$10) addi \$8 \$8 1
	addi \$6 \$6 1 50 \$8 0 (\$6)
	sw \$6 0 (\$10) addi \$6\$6 4
	addi \$10\$104 bre \$6\$7 Loop Begin
	j Loop Begin the assembler always user \$2
	Circle Some Velver when
What are some pseudo instructions	→ beg \$rs imm Laber → addi \$1 \$0 imm resolving instructions.
& their translations?	beg \$rs \$2 Laber
	→ bye \$3 \$9 Lakel → Sit \$1 \$8 \$9 → \$1 will equal 1; f 8<9, and 0 if
	J beq \$ 1 \$0 Laber 8≥9
	ble \$9\$14 Label → SIt \$1 \$14 \$9
	beg SI SO Label
What is the load immediate	-> Sets & rd to the immediate value:
instruction?	li \$rd immediate RErdD=immediate
What is the move instruction?	-> Copies the value of \$rs into \$rd :
	move Srd Srs R(ra)= R(rs)
Example using these?	$\rightarrow a \partial a i 48 40 4 \rightarrow 1i 48 4$
J	\rightarrow addi \$7 \$60 \rightarrow more \$1 \$6

Load Word and Store 1	Word: Encoding & F	Lardware Support	
ECALL: What are the "loga word"	-> LOAD WORD: W S.		
nd "store word" instactions?		at mem. address [ars	imm) in Set
	- STORE WORD: SW		
		e \$rt at mem. address	LSrs + imm.]
ow are lw and sw instructions	-> Same as i- format!		
ncoded in binary?	Opcode	rs rt	immediate
	Bits: 31:26	25:21 20:16	15:0
	(6 61+3)	(S bits) (S bits)	(16 bits)
	· W: opcode = 100	ь II	
	· sw: oplode = 1010		
			Sign Extend (immediate)
hat "operation" is being done			order for the for the formation of the f
for hw and sw?	• We can use the Ai		
	· Sinze it is add	ition , always sign ext	end the invnediate.
ow do we extend the Datapath	25:21	s Read Read Reg 1 Data 1	32 32 Besult of
o support live and sw?	Instruction 32 20:16	5 Rend Rend ecy 2 Reg Data 2	RErsJ+imm.
	velve of srt	Write Fite	5
	15:11 RegDs	22 Write Data	Src Dp
	15:0	Regwrite	> Result of RS(+)
		Extend /	
		Extrype 32	1
	> From the wrrent DP,	we can obtain 3 things	
	· R(r+), aka the	value to place in memory f	for SW instructions
	strt, axe the rea	jister to store the mem. da	ta for lw instructions
	· RCrs] + imm, al	ca the memory address	in question
			a new component & new control signals
	per com operations in	wind menned Medad (WITCH COMPONENT & ICH CUITEDI SIGNAIS

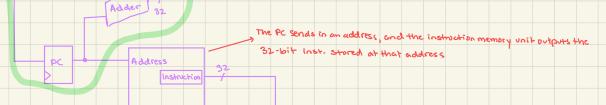
What is the Mem Kead Control signal! -> Tells us if we have to read from N	nembry
--	--------

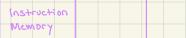
	• Iw = reading from Mem = MemRead = 1
	· sw = writing to MEM = MEM RECA = 0
	- When Mem Read = 1, the "memory Unit" obtains the value of "Address" in Main Mem,
	and places it in the "lead Data" slot that gets output
What is the Mem Write control signal?	-> Tells us if we have to write to memory
	W Man Write = 0
	• SW: ManWate = I
	- When MemWrite = 1 , the memory unit takes the data placed in "Write Data" & puts it in
	Main Mem. at the address.
What is the Memtoleg control	> Tells us what output to send to the Write Register : the output of the memory
signal?	unit processes - aka the data from some addr. in MM - OR the output of the
Ň	ALV.

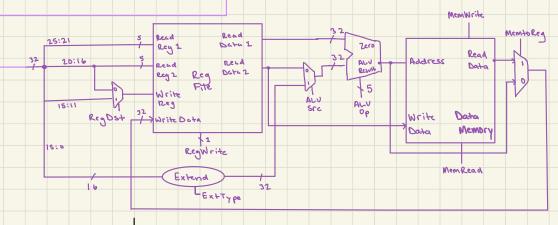
. For add, sub, etc. ops we learned so far, we don't care about the memory

unit, so Memtoleg = D

* For IN, Memtoleg = 1

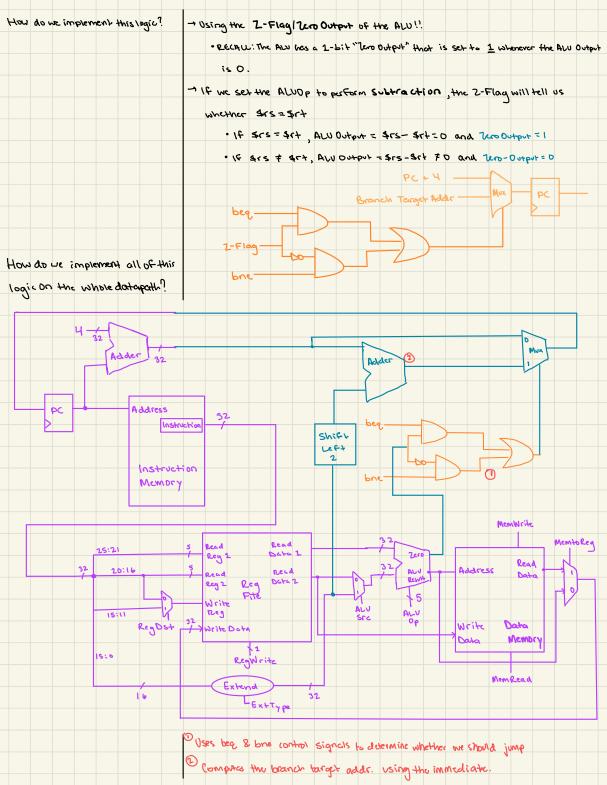

The Program Counter C	<u>ک</u>	
What is the Stored Program	\rightarrow RSCALL: Instructions (like add \$8 \$7 \$6) c	are stored in memory as 32-bit
Concept?	binary numbers. → Since inst. are 32 bits, each take up 4 bytes	is memory to the Text section
	→ The instructions for a given program are stored	
	that increment by 4.	
How does the code that we write	2) Pseudo-instructions are converted into nat	nut hores
get "resolved" for execution ?	2) Addresses for labels and offsets get resolu	red.
2	Address in Accepted oppran	
Example of the stored program	memory while machine code (code that is actually the inst. is representation of executed)	og program (the code that you mote)
concept?	stored the inst.	
	Address Code Basic	Source
	0x10003000 0x2000000 addi \$6,\$0,0 0x0003004 0x20c70014 addi \$7,\$6,20	la \$6 arr addi \$7,\$6,20
		(w \$8,0(\$6)
notice that addr increment by 4	0x0000300 c 0x8cc80300 (W \$8,0(\$6)	addi \$8,\$8,1
	0x00003010 0xacc800000 SW \$8,0(26)	SW \$8,0(\$6)
	0x0000014 0x20c60004 addi \$6,56,4	add: \$6,\$6,4
	0×00003018 0x14c7ffb bre \$6,\$7,-5	bre \$6 \$7 LoopBegin
What is the program	-> A register that holds the address of the instr	
(DUNTER (PC)?	•Holds the 32-bit address in a 32-bit 1	register
	The PC is not inside the register file.	PC - D - 0000300 c
How is the value of the PC set?	→ For Ex, when executing addi \$8 \$8 from the → Our datapath executes one instruction per	-
	cycle, the datapath will increment the PC	
WAIT sowhat does this have to	- The PC is what automates the process of sendin	q 32-bit instructions as inputs to
do with anything?	our data path!	J
	** 25:21 5 Bend Bend	32 7 Zero Mentoleg
	Instruction 32 20:16 5 Read Read Date 2	and address Read Data
	15:11 Weite 15:11 Reg RegOst Horizota	ALV Sre Op Write Data
	15:0 EcgWrite	Data Membry
	Ib External JL	Merrikaad

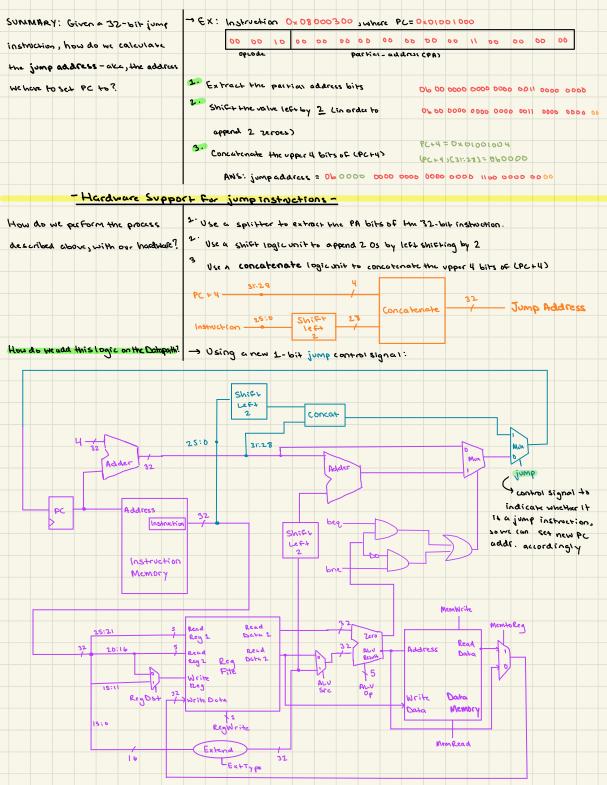

How do we use the RC to do this?	-> The PC holds the address of the instruction that should be executed in . On every
	clock cylle, we need to do the following:
	D Increment PC= PC+4
	2) Send the PC val into an "instruction memory" unit to extract the 32-bit
	instruction of that address
	3) Send the 52-bit instruction into our datapath


How do we add the PC and

Instruction Memory to our datapath?

Dnevery clock cycle, this sets PC=PC+U





Branch Instruction En	Loding					
How do we encode branch	-> 10 i-fo	(Mat)	beq rs	rt Lab	el Instruction	Oprode
					beq	000100
Instructions in binary?	TFOR EX,	beg \$10	\$ 11 LoopBe	gin	bre	000101
			\mathcal{Y}			
	Field :	opcode	rs	rt	immediate	
	Bits:	00100	01010	01011	isi	
What is the target instruction?	-> The instr	uction that t	he program wi	ill jump to if	the branch is taken	
What is the "byte offset to	→ The disto	nue, in bytes	, between the	wrrent bran	nch instruction itscic,	and the target
target instruction"?	instructio	ດ.				
	- The byte .	officet will a	lways be a mu	Itions of 4.	which means that the	last 2 bits
					0, U, 8, C, etc. all have	
					re next instruction , e.g	
		1	-			
How do you generate the value of	L. Ubraint	ALC ANTIAC DE	TCF1-aka	n, the next in	nst. below the branch	
the immediate to encode n			on the branch		EX: beg \$	
branch instruction?	2. Compute	the byte off	set between	PC+4 and H		\$4 \$5 elseIf
			he inst.that w		add	\$7 \$8 \$20 xit
					elself:	\$4 \$6 else 4
			ddr)-(PC+U		add	\$7 \$10 \$11 \$7 \$7 \$12
	Since lack	n inst. are 4 ad	ldresses away h	from cach other	,the byte add j e	\$7 \$7 \$8 xit
	offset is alw	ays a multiple	. of 4 , and its k	ast 2 bits are (). So we remove else: add	\$7 \$8 \$11
	the last 2 b	sits.			exit:	
	immediate	= (to cash ut	Idr - (PC+4)	>> 2	ANS= 0000 000	remore these
How do we compute the branch		(turgo u		,. 2		
target address given the immediate?	→ ZX: The :	instruction D	×15320007	translates t	ъ: 	
		opcode	rs	r t	immediate	
		101000	01001	10010	0000 0000 0000	ыш
	-> Assume	the current	PC = 0x 0000	3012		
	2. Extract	the immed	iate valve : o	0000 0000	0000 0111	
	1 1				10 0000 0000 0000 0000 0	
					ad adda dada adap ada	
	4. Add	PC + 4 +0 ;		000001C		
		h-ranch		0000004		
	The t	branch addre	SS OX DD	003030		
					this syntax mean	15
					concatenate	
	Brand	n Target Ad	dr = PC + 4	+ 230-bit s	sign-ext imm. ,06003	

- Datapath Su	pport for Branching -
How do we obtain the branch	-> RECLALL: to generate the branch target address:
target address?	2. Sign Extend the imm. value to 30 bits
5	2. A poind 2 Os
	3. Add It to PC+4
How do we do this on the	- We can achieve step 2 by left-shifting the 3D-bit imm. by 2!
datequith?	Branch , Target
Oricoportis .	
	Instruction by test
	L ExtType=1
What do we do if we shouldn't	-> The branch target addr. = the value we should set PC to IF we want to branch.
branch upon a branch inst.?	→ IF Not, Set PC=PC+4, like usual
	- We will need a mux to make this decision:
	Adder 32
	Branch
	Bronch Mux PC
Llou will we set the rotal sissed	
How will we set the control signal	→ Using a piece of logic that interprets the beg and bre branch instructions.
for the Mux?	- This logic will butput 1 to the Mux if we should branch, and D otherwise.
How do we support beg &	- Using 2 new 1-bit control signals to indicate them:
bre on the datapath?	· beg: 1 if inst. is beg, O otherwise
	· bre : 1 if inst. is bre, 0 otherwise
	→ beg \$rs \$rt laber: if \$rs=\$rt, we want to branch.
	- bre \$rs \$rt Laber : if \$rs \$ \$rt, we want to branch.
	- SUMMARY: Output 1 to the Mux control signal IF:
	· beg =1 AND \$rs=\$r+ DR
	· bre =1 AND Srs = Srt
	DIVE - 1 HELD - 1 - T - T - T - T - T - T - T - T - T

ECALL: What are jump	- An instruction that tells the program to jump to an ad	dress (specified by the Laber
instructions?	to continue execution.	,
	j Label	
	·aka, set PC to the address of Labe 1	
ow are jump instructions encoded		
	→ In a new instruction format called j-format:	000010
n binary!	bpcode partial address (PA)	
	31 2625 °	
nat is the problem?	- We can only fit a 26-bit address in the instruction, but +	ne PC needs a 32-bit-addi
How can we reduce the size of the	- We can inop off mot store the last 2 bits, since the la	
address to 30 bits?		060 0000 (0)
	address are always 0 - due to word alignment:	060 0100 (9)
		060 1000 (8)
ow doweget rid of the last 4	- By limiting the range of advaress value we can jump t	
xtra bits?	- When setting the PA field of a jump instruction, we will	chop off the topy bits of th
	target uddress.	
	- When constructing the new Pladds given the PA Field	V. a jump instruction. we
	will set the top 4 bits to be the top 4 bits of (PC)	- 4).
ny do we do this?	→ Scotting the top 4 Lits to be those of (PC+4) gives us an	
	to where we are corrently located. • To jump outside this range, we'd have to use	a different instruction.
nat is the JumpAddress given a	• To jump outside this range, we'd have to use	
natis the JumpAddrees given a	• To jump outside this range, we'd have to use JumpAddr = { (PC+H)[31:28], partial_address, ob	
	• To jump outside this range, we'd have to use Jump Addr = { (PC+4)[31:28], partial_address, Db bits 31:28 of PC+4 bits 25:0 of j-inst	50 3 CO
inaly j-instruction?	• To jump outside this range, we'd have to use JumpAddr = { (PC+H)[31:28], partial_address, ob	£ 00
inaly j-instruction?	• To jump outside this range, we'd have to use Jump Addr = { (PC+4)[31:28], partial_address, Db bits 31:28 of PC+4 bits 25:0 of j-inst	5 602
inary j-instruction? iven a program with a jump inst.,	 To jump ourside this range, we'd have to use Jump Addr = § (PC+4)[3]:28], partial_address, Db bits 31:28 of PC+4 bits 25:0 of j-inst → EX, where the program begins at address OX 00000 1.data 3word 8, 9, 14, 15 5text 	0003000 0×00003000
inary j-instruction? iven A program with a jump inst., o we compute the binary	 To jump ourside this range, we'd have to use Jump Addr = § (PC+4)[3]:28], partial_address, ob bits 31:28 of PC+4 bits 31:28 of PC+4 bits 25:0 of inst EX, where the program begins at address OK 00007 1 .data 3 A:	0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
inary j-instruction? with a jump inst., o we compute the binary	 To jump outside this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address, Db bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address DA 000001 .data .data .word 8, 9, 14, 15 .text la \$5 A # address of A addis \$5 80 # sum addis \$5 80 # size of array addis \$5 80 # size of array addis \$5 80 # i: loop counter 	00000000000000000000000000000000000000
inary j-instruction? iven a program with a jump inst.,	 To jump outside this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address, Ob bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address OA 000001 i.data A: .word 8, 9, 14, 15 i.text la \$5 A # address of A addis \$5 \$9 \$4 # size of array addis \$7 \$9 \$4 # size of array addis \$7 \$9 \$4 # size of array addis \$5 \$9 \$4 # size of array 	0 x 0000 30 10 0 x 0000 30 10
lnary j-instruction? ven a program with a jumpinst, s we compute the binary	 To jump ortside this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address, Ob bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address OA 000001 i.data A: .word 8, 9, 14, 15 .text la \$5 A # address of A addis \$5 \$9 \$4 # size of array addis \$7 \$9 \$4 # size of array addis \$7 \$9 \$4 # size of array addis \$8 \$9 \$8 \$7 LoopEnd # exit loop when we reach the end of the array-side \$9 \$9 \$5 \$ # compute byte offset 	0x 00003010 0x 00003000 0x 00003000 0x 00003000 0x 00003000 0x 00003010 0x 00003014 0x 00003014
lnary j-instruction? ven a program with a jumpinst, s we compute the binary	 To jump orteide this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address, ob with \$1:28 of PC+4 bits \$1:28 of PC+4 bits \$2:25:0 of j-inst EX, where the program begins at address DA 00000 1.data 3. A:word 8, 9, 14, 15 4. s.text 6 addi \$6 \$0 0 # sum address of A addi \$5 \$0 0 # size of array addi \$5 \$0 0	0 3 3 Δ Δ Δ Δ Δ Ξ 3 3 3 Ο Δ Ο 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
inary j-instruction? iven & program with a jump inst., o we compute the binary	 To jump orteide this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address_, Ob with \$1:28 of PC+4 bith \$1:28 of PC+4 bith \$1:28 of PC+4 bith \$2:25:0 of j-inst EX, where the program begins at address DA 000001 1.data addi \$6 \$0 0 # sum addi \$6 \$0 0 # size of array addi \$5 \$0 0 # size of array addi \$8 \$0 0 # 1: loop counter 12 LoopBegin: be \$9 \$5 \$1 coopEnd # exit loop when we reach the end of the array - 14 \$11 \$9 \$8 \$2 # compute byte offset addi \$8 \$5 \$1 \$2 # somate dress of A[1] be \$18 \$9 \$10 \$1 \$2 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10	0x 0000 30 00 0x 0000 30 00 0x 0000 30 00 0x 0000 30 04 0x 0000 30 04 0x 0000 30 15 0x 0000 30 15 0x 0000 30 15 0x 0000 30 15 0x 0000 30 15
inary j-instruction? won a program with a jump inst., o we compute the binary	 To jump outside this range, we'd have to use Jump Hodor = § (PC+4)[231:28], partial_address, obtoos bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address OK 000001 i.data i.data i.ext i.text i.text	0x 00003000 0x 00003000 0x 00003000 0x 0000300 0x 0000300 0x 0000300 0x 00003010 0x 00003018 0x 00003018 0x 00003018 0x 00003018 0x 00003018
inary j-instruction? iven & program with a jump inst., o we compute the binary	 To jump outside this range, we'd have to use Jump Hddr = { (PC+4)C31:28], partial_address, ob bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address OK 000001 i.data A: .word 8, 9, 14, 15 .text addi 55 80 # sum addi 55 80 # size of array addi 55 80 # size of array addi 55 87 LoopEnd # exit loop when we reach the end of the array- sli 55 82 # compute byte offset add 56 58 9 # sum = A[1] add 56 58 9 # sum = A[1] add 58 59 # sum = A[1] add 58 59 # sum = A[1] add 58 59 # sum = A[1] bits 100 Begin # jump back to start of array 	0x 00003000 0x 00003000 0x 00003000 0x 0000300 0x 0000300 0x 0000300 0x 00003010 0x 00003018 0x 00003018 0x 00003018 0x 00003018 0x 00003018
inary j-instruction? iven & program with a jump inst., o we compute the binary	 To jump ortside this range, we'd have to use Jump Hddr = § (PC+4)[31:28], partial_address, obtotic 31:28 of PC+4 use 25:0 of j-inst EX, where the program begins at address OK ODDOO i.data i.data i.text <l< td=""><td>OX 00003000 OX 0000000000 OX 000000000000000000000000000000000000</td></l<>	OX 00003000 OX 0000000000 OX 000000000000000000000000000000000000
inary j-instruction? iven & program with a jump inst., o we compute the binary	 To jump outside this range, we'd have to use Jump Hddr = { (PC+4)C31:28], partial_address, ob bits 31:28 of PC+4 bits 25:0 of j-inst EX, where the program begins at address OK 000001 i.data A: .word 8, 9, 14, 15 .text addi 55 80 # sum addi 55 80 # size of array addi 55 80 # size of array addi 55 87 LoopEnd # exit loop when we reach the end of the array- sli 55 82 # compute byte offset add 56 58 9 # sum = A[1] add 56 58 9 # sum = A[1] add 58 59 # sum = A[1] add 58 59 # sum = A[1] add 58 59 # sum = A[1] bits 100 Begin # jump back to start of array 	OX 00003000 OX 00003010 OX 00003012 OX 00003012 OX 00003012 OX 00003012
inary j-instruction? with a jump inst., o we compute the binary	 To jump ortside this range, we'd have to use Jump Hddr = § (PC+4)[31:28], partial_address, obtotic 31:28 of PC+4 use 25:0 of j-inst EX, where the program begins at address OK ODDOO i.data i.data i.text <l< td=""><td>Ox D00 3000 Ox D00 3010 Ox D00 3010 Ox D00 3010 Ox D000 3010</td></l<>	Ox D00 3000 Ox D00 3010 Ox D00 3010 Ox D00 3010 Ox D000 3010
inary j-instruction? with a jump inst., o we compute the binary	 To jump outside this range, we'd have to use Jump Hddr = § (PC+4)[31:28], partial_address, obtotic 31:28 of PC+4 with 25:0 of j-inst 1:0 of j	OX 00003000 OX 00003010 OX 00003012 OX 00003013 OX 00003010 OX 00003010 OX 00003010
lnary j-instruction? ven a program with a jumpinst, s we compute the binary	 To jump outside this range, we'd have to use Jump Addr = § (PC+4)[31:28], partial_address, Db wite 31:28 of PC+4 wite 25:0 of j-inst EX, where the program begins at address DA 000001 .data .data .word 8, 9, 14, 15 .text .teg \$\$ 7 LoopEnd # exit loop when we reach the end of the array addi \$\$ 58 0 # i: loop counter .text .text<td>Ox 00003000 Ox 000030000 Ox 00003000 Ox 00003000 Ox 00003000 Ox 000030000 Ox 000030000000000 Ox 0000300000000000000000000000000000000</td>	Ox 00003000 Ox 000030000 Ox 00003000 Ox 00003000 Ox 00003000 Ox 000030000 Ox 000030000000000 Ox 0000300000000000000000000000000000000

What are all of the control	Control Signal	Value	
signal values for a jump	RegDst	X	
instruction?	Jump		
	beq	X	
	bre	×	
	Mempead	0 *	
	Mem tolley	X	These 3 should never be "don't care"s.
	ALUOP	XXXXX	IF we aren't writing to a reg, or reculing or writing from MM, set these
	Memwrite	0 *	+0 0.
	ALUSIC	×	
	Regwrite	0*	
	ExtType	×	

What are all of the control	Control Signal	Value	
signal values for a beg	RegDst	X	
instruction?	Jump	0	
	beg	1	
	bre	D	
	MemRead	0 *	
	Men tolleg	x	
	ALUOP	subtraction	
	Menwrite	• 0	
	ALUSIC	<u> </u>	Why? Because we wont to perform \$15-\$rt.
	Regwrite	0*	
	ExtType	1	
What is the range of addressee		at the time of	inst. , we can jump to any address that has the same
we can jump to for a jump inst.?	top 4 bits as wr		

OxOFFFFFFF 61L of word alignment). Thet's a total of ~ 65,273,855 addresses! What is the range of addresses → 1F PC= 6x00700000, range is 0x006E0004 to 0x00720000 we can jump to For a branch inst.?

· Ex: IF PC = 0x00700000, our range is 0x00000000 to 0x0FFFFFFC (not

Function Calls	
What is the calling convention?	> A scheme for now functions receive arguments & return values
	-> Caller : A function that calls another function
	-> Callee : A function called by another function
What is the protocol for callers	- Schore making the function coll, the coller places the parameter args in registers
and callees?	\$a0 - \$a3 (4-7)
	→ When finished, the callee places the return values in registers \$v0 - \$v1 (2-3)
How does the callee know where	-> Return Address : the address of the inst. where the earlier will return.
to return when it Finishes execution?	-> When the caller calls the caller, they place the ret. addr. in a special register
	(\$ra=\$31) so the callee knows where to return.
So how does a caller actually	- Using the jump-and-link (JAL) instruction! To jump to a Function.
call a function?	→ Calling a function means 2 things on the hardware side:
	1. Setting PC to the address of the function being called
	2. Setting reg sra to the address we want the program to resume exembing
	at after the function is over.
What does the JAL instruction	→ Syntax: jal Label
ბი ¹ .	-> Sets the PC to be the address of "Label" - at a the callec's label
	-> AND automatically sets register Sra to bethe return address
	return addr = address of the inst. in main right after the JAL Instruction
How does the callee return	- Using the jump register instruction!
execution to the caller when its done?	jr Sra
	sets the PC to be the address value stored at sta
Summary: What are some special	Number Name Uses
registers and their uses?	\$0 \$zero · ciways holding the value D
	\$ 1 \$ at . Resolving pseudo instructions
	\$2 \$vD . Where callee places return valvus
	· Where we place the "operation number" when performing syscall
	· Where the OS places value read from user input after syscall
	\$3 \$v1 . Where callee places return values
	s 4 s a d . Where caller places function parameter args
	· Where we place the value we want to print when performing syscall
	45 4a1 7
	\$ 6 \$ az Where caller places function parameter args
	\$ 1 \$ a3
	\$31 \$ ra . Stores return address upon a function call

Example program performing	→ C program:	int sum 3 lint a, int b, int c) 2
a function call?		return at bt c j 3
		int main () {
		int a = 1;
		int 6 = 5;
		int c = 8;
		$in+\gamma = sum3(a_{3}b_{3}c);$
		printf ("7.d/n", y);
	-> Assembly program	
		rex +
		main:
	0x00003000	addi \$a0 \$0 1 - Store intab, and c in the
	0×00003004	addi \$a1 \$D 5 argument registers a0, a1, a2
	0×0003009	addi \$a2 \$0 8
		jump to Label sum 3 AND set \$ra
	0×0000 300 c	jal sum 3 to return instruction addr (PC+4):
		\$ra = 0x0000 3010
	0×0000 3010	addi \$ aD SVD 0 - We know that the return value y is stored
		in SUO. More it to Sad (S4) so we can print
	0x 0000301 4	addi \$v0 \$0 1 -> set \$v0 (\$2) to 1 to indicate "print
	0x00003019	syscall an integer from \$4"
	0,2000 301 C	addi \$v0 \$0 10 -> scr \$2 to 10 For "exit program"
	0x00003020	Syscall NECESSARY bicotherwise progravill keep
		exerciting the stuff below
	0,00003024	sum3:
	0x00003028	add \$v0 \$aD \$a1 and the values in all arg. registers
	0x0000302c	add \$v0 \$v0 \$a2 } and store ans in \$v0
	0x00003030	je \$ ca return to main ; resume execution at
		PC=\$ra= 0x00003010

	Shi	61	Instr	uctions		
Wha	at ie	the	Shift	1ef+ 10gic=1"	- sll srd srt shamt	
inst	in Lt	ion?			· Shift the contents of \$rt to the LEFT by shart & store result in Srd	
					· R(rd) = R[r+] << shamt	
why	is	511	USEFUL?		-> For computing the byte offset when we need to index an array!	
					$\rightarrow \mathbf{Recau}$: $\mathbf{x} < \mathbf{e}_{\mathbf{y}} = \mathbf{x} \cdot 2^{\mathbf{y}}$	
					- Given an array, if we want to access index & b, we shift b left by 2	
					and add the result to our base address!	
E	xam	ple?			.data	
					are: word 1 5 10 15 20	
					·tex t	
					addi \$ a1 \$0 3 we want arr[3]	
					la \$5 arr Stores address of arr CD7 in \$5	
					sil \$a1 \$a1 2	
					add 4 6 45 \$a1 stores adds of air(0] + 12 = addr of air(3) in \$	Ն
					$1_{W} = 0(36) \longrightarrow = 37 = arr(33 = 15$	
Nes	nat o	נ <i>ר</i> נ +	he 2 rio	ght	-> Shift right 10gical : Srl Srd Srt Shemt	
sh	.;F+	ins	twetion	s 1	· Pad left side with Ds	
					RCrd] = RCrt] >> shamt	
					→ Shift right arithmetic: Sra Srd Srt shamt	

· Pad left side with MSB to preserve sign

Storing Variables o	n the Stack	
When is the register spra not	-> When we have nested function calls.	
enough to help return from	- RECALL: Sig is used to store the return address when a Function call is made	de usin
Function calls?	$\rightarrow Ex:$ $f_{o_{y}}$.	-
	Adde	
	hello: ascitz "Hello"	
	world: .asciiz "world!\n"	
	text	
	main	
	0 jal print_helloworld -> 2) jump to print_helloworld & set \$10	a=
	4 jal print_hello PC+4 = 4	
	8 1; 500 10	
	12 syscall	
	print_helloWorld;	
	16 jal print_bello 2) jump to print_bello & set \$1a=PC+4	= 20
	20 joi print-world "" jump to print-world & set \$ra= PC+	
	24 is sra jong to address tra= 24 ??? ?	
	print_hello:	
	28 la sad hello 7	
	52 li suo 4 print	
	36 syscall "hello"	
	40 jr \$ra 3) Finished 41 print_hells. Jumpto addr.	\$50
		410
	44 la sad world]	
	48 lisvo H "wanan"	
	C 2	Ac
	56 jr sra syscall - 5° Finished w print-world. Jumpto ad	
which has been as a subject		
What has happened in this	→ At step 6, we are ready to return to main, as it was the one that called	
ex cmple?	print_hello World	
	• We expected it state us to PC=20	
	→ BUT, at this point sca was overwritten, so we have lost the return address to	Main
	and are stuck infinitely jumping to uddress 24 !!!	
How can we fix this problem?	→ By saving the ret. addr. somewhere else before we overwrite it. Saving it to a	wnother
	register is not a sustainable solution blc it can still get overwritten.	
	-> Instead, we will store the RA on the stack	

When would we save the RA	-> When the callee begins, sove the value of Sra to the stack
on the stack?	→ When the caller is ready to return, get the val. from the stack & place it
	back into Bra, before the jr sra instruction.
	print_helloworld:
	A Save &ra=20 on stack
	jal print-mello
	jal print-world
	# restore rails from stage
	je sta
	→ Now, step 6 (from EX on prev page) will take us back tomain by setting PC=20!
- The	stack pointer -
ECALL: What is the stack?	
whit is the stace .	> An area of memory used to store tomporary function data, such as local variation
	→ The Shack grows DOWN (high → low mem. addresser)
what is the stack pointer?	Stack
	→ A special register \$ \$P (which is actually \$29)
	that is used to point to the last item that was Heap (Dynamic lata)
	placed on the stock Static Data
	• \$50 holds the address of the must recently Reserved
	placed val on the stack.
tow do we store a new itom on	→ The stack grows down, so we must decrement the addr. value stored in ss
the stack?	by 4 to move to a new spot on the stack.
Example?	O CUTTERNT STACK: \$50= DxD0001034 Address Data
	and points to the last val added, 12. \$ 5p -> 0x00001034 12
	-> To store a new item, the value of sra > 0x00001030
	1) Declement sp by 4 Ox 0000 10 2C
	2) Store value in memory DX 0000 1028
	add: 450 450 - 4 0x 0000 1024
	SW STA D(SSP) Address Data
	(2) Updated stack: 0x00001034 12
	\$\$P→0r0000(020 0r0002004
	0 × 00 00 10 2 -
	DX 0000 1078
	0x D000 10 24

How do we remove an item from	-> "Remove" aka to fetch back the value we stored
the stack?	-> When we want to restore a val from the stack suc simply
	2. readilitato a register (with (W))
	2. and then move the stack pointer back up
	-> We don't have to " clear" the value from memory; by moving sp back up,
	we've "unallocated" that stack space. Ble next time we want to store on
	the stack, we will just overwrite this value.
Example?	→ Current stock: \$5p=0x00001030 Address Data
	-> @ Read / "remove" / restore Value of ra: 0x00001034 12
	(w \$ra D(\$SP) \$SP→ 0x00001030 0x00003004
	0x0000102C
	0×0000 10 28
	→ @ Updated stark: Address Date Date Date
	\$ SP -> 0x00001034 12
	Dr020401020 0801020
	0×00002C
	8.C 01 0000 × 00
	0x0000 10 24
	aline with Eucline - saved values -
- (alling Olive	ntion with Function - saved values -
RECALL: Why do we have a	-> Imagine each function in a program was written by a different person, & they
calling convention?	didn't know how the other person wrote their func, or what registers they used.

-> Then, we can't necessarily rely on a val. saved in a reg. to not be overwritten, so we must have rules (conventions for preserving all parts of the program (for ex, param

args in \$20-\$23 & return values in \$v0-\$v1)

What is another example of	→ IF a callee overwrites coller-saved valves! Ex:	maini
when we might need to save values		addi \$51 \$0 0
to the stack?		la \$52 655ay-1
		la \$53 array-2
		IN \$00 0(\$52)
	fun overwrites	jal fun
	the value in \$\$1	Fun:
		addi \$51 \$20 1
		506 \$52 \$0 \$ aD
		MUI \$VD \$51 \$52
		jr \$ra

How can we fix this problem?	-> By havi	ng the callee So	we the values in the caller-s	aved registers to the
	stack before overwriting them.			
	-> Then, be	Fore returning t	to caller, the caller restores th	ne values from the stack !
Example of the fix?	- The calle	e " Fun" :		
	Fun :		allocate space to store 2	reg-valves on the stack
	addi	\$50 \$50 -8	by decrumonting \$50 by 8	
		sz 4 (\$sp) —	-> Store contents of \$52 at a	lddr [spaddr +4]
			-> Store contents of \$51 at	
	مععة	\$51 \$a0 1 7	> Now, collee can use registers	ssl and as 2 with
		\$52 \$0 \$00	worrying	
		\$10 \$11 \$52		
			Before returning to the cal	ler, restore the values of
	IN	\$51 OL\$5P)	\$ \$1 and \$52 by reading	
		452 4145p)		
		; \$\$P \$\$P 8	- move sp back up to "deallo	cotte "
	jr	sra		
What is a Caller saved register	- Register	s that the caller	USLS, BUT expects that the	callee may overwrite
in the calling convention?	them.			
	• The	caller CAN OVERW	tite these registers who saving th	nem
			n after c func. call, it is the	
	to save		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
What are caller saved registers?			pects the callee to NOT overw	rite - caller expects
	-	in these registers		
				Nee's sy posibilit
			e these registers, it is the co	The second se
What are the designated celler-	Legisters	Name	e stack and then later rest Use	Type
	\$2-3	\$v0-\$v1		Caller - saved
and collee- saved registers in MIPS?	\$4-7	\$0 -\$03	callee stores return values	
	\$8-15	\$+0-\$+7	caller stores param. orgs	ealler-saved
	\$16-23	\$ sD - \$ s7	registers for caller to use	Caller-saved Callee-saved
	\$24-25	#t8 -#td	registers Fur callee to use	Caller - Saved
	\$31	\$ 6 9	return address pointer	caller-saved
		2		
	THE CARO	· · · · · · · · · · · · · · · · · · ·	are responsible for soving their own	NOT OCTORE CALLING ONDITION TUNC.